Compact convolutional neural network cascade for face detection

I. A. Kalinovskii, V. G. Spitsyn

Результат исследований: Материалы для журналаСтатьярецензирование

14 Цитирования (Scopus)


This paper presents a new solution to the frontal face detection problem based on a compact convolutional neural networks cascade. Test results on an FDDB dataset show that it is able to compete with state-of-the-art algorithms. This proposed detector is implemented using three technologies: SSE/AVX/AVX2 instruction sets for Intel CPUs, Nvidia CUDA, and OpenCL. The detection speed of our approach exceeds considerably all the existing CPU-based and GPU-based algorithms. Thanks to its high computational efficiency, our detector can process 4K Ultra HD video stream in real time (up to 27 fps) on mobile platforms while searching objects with a dimension of 60×60 pixels or higher. At the same time, its processing speed is almost independent of the background and the number of objects in a scene. This is achieved by asynchronous computation of stages in the cascade.

Язык оригиналаАнглийский
Страницы (с-по)375-387
Число страниц13
ЖурналCEUR Workshop Proceedings
СостояниеОпубликовано - 2016

ASJC Scopus subject areas

  • Computer Science(all)

Fingerprint Подробные сведения о темах исследования «Compact convolutional neural network cascade for face detection». Вместе они формируют уникальный семантический отпечаток (fingerprint).