Commutative subalgebras of three first-order symmetry operators and separation of variables in the wave equation

V. G. Bagrov, B. F. Samsonov, A. V. Shapovalov, I. V. Shirokov

Результат исследований: Материалы для журналаСтатьярецензирование

Аннотация

The problem of complex separation of variables in the wave equation is considered in four-dimensional Minkowskii space-time. In contrast to the known series of researches by Kalnins and Miller (see Ref. Zh., Fiz., 2B9 (1978); 1B208 and 1B209 (1979), e.g.), underlying this research is a theorem on the necessary and sufficient conditions of total separation of variables in the non-parabolic V. N. Shapovalov equation (Differents. Uravn., 16, No. 10, 1864-1874 (1980)). Nonequivalent complete sets of three differential first-order symmetry operators are constructed, appropriate coordinate systems are found, and complete separation of variables is performed in the wave equation.

Язык оригиналаАнглийский
Страницы (с-по)448-452
Число страниц5
ЖурналSoviet Physics Journal
Том33
Номер выпуска5
DOI
СостояниеОпубликовано - мая 1990
Опубликовано для внешнего пользованияДа

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «Commutative subalgebras of three first-order symmetry operators and separation of variables in the wave equation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать