Cancer Diagnosis by Neural Network Analysis of Data from Semiconductor Sensors

Vladimir I. Chernov, Evgeniy L. Choynzonov, Denis E. Kulbakin, Elena V. Obkhodskaya, Artem V. Obkhodskiy, Aleksandr S. Popov, Victor I. Sachkov, Anna S. Sachkova

Результат исследований: Материалы для журналаСтатьярецензирование


“Electronic nose” technology, including technical and software tools to analyze gas mixtures, is promising regarding the diagnosis of malignant neoplasms. This paper presents the research results of breath samples analysis from 59 people, including patients with a confirmed diagnosis of respiratory tract cancer. The research was carried out using a gas analytical system including a sampling device with 14 metal oxide sensors and a computer for data analysis. After digitization and preprocessing, the data were analyzed by a neural network with perceptron architecture. As a result, the accuracy of determining oncological disease was 81.85%, the sensitivity was 90.73%, and the specificity was 61.39%.

Язык оригиналаАнглийский
Номер статьи677
Номер выпуска9
СостояниеОпубликовано - сен 2020

ASJC Scopus subject areas

  • Clinical Biochemistry

Fingerprint Подробные сведения о темах исследования «Cancer Diagnosis by Neural Network Analysis of Data from Semiconductor Sensors». Вместе они формируют уникальный семантический отпечаток (fingerprint).