TY - JOUR
T1 - Breakup of heterogeneous water drop immersed in high-temperature air
AU - Vysokomornaya, Olga V.
AU - Piskunov, Maxim V.
AU - Strizhak, Pavel A.
PY - 2017/12/25
Y1 - 2017/12/25
N2 - The enhancement of the evaporation rate of a heterogeneous water drop is experimentally investigated. A water drop encapsulating a solid graphite inclusion is instantaneously placed in the very hot air. Under action of the high ambient temperature and due to different thermal properties between water and solid inclusion, the initial drop explodes and creates numerous very small droplets. The vaporization rate of the water drop is strongly increased leading to a short time life of the drop. High speed video recording is used to detail the explosive breakup mechanism of a drop immersed in hot air when its temperature varies in the range between 1073 K and 1373 K. The target of the study is to determine the possible conditions for the increase of the water/air surface of the drop after breakup, i.e., the ratio of the final to initial surface, Sout/Sin, and to verify that this enlargement is responsible of the evaporation rate enhancement. For this purpose, we investigate drops of different initial volumes (5–15 µl) with graphite solid inclusions of different shapes and volumes: 2 × 2 × 1 mm, 2 × 2 × 2 mm, or 2 × 2 × 3 mm. The water surface ratio Sout/Sin is given as function of Vw/Vinc, which is the ratio of initial volume of water drop Vw to the volume of solid graphite inclusion Vinc. The study has shown that the maximum value of the ratio Sout/Sin ≈ 15 can be reached when Vw ∼ Vinc. When, the ratio of Sout/Sin varies in the range 1 to 15. The increase of the evaporating surface is of the highest interest to improve the heat transport and to be used and developed in heat technologies.
AB - The enhancement of the evaporation rate of a heterogeneous water drop is experimentally investigated. A water drop encapsulating a solid graphite inclusion is instantaneously placed in the very hot air. Under action of the high ambient temperature and due to different thermal properties between water and solid inclusion, the initial drop explodes and creates numerous very small droplets. The vaporization rate of the water drop is strongly increased leading to a short time life of the drop. High speed video recording is used to detail the explosive breakup mechanism of a drop immersed in hot air when its temperature varies in the range between 1073 K and 1373 K. The target of the study is to determine the possible conditions for the increase of the water/air surface of the drop after breakup, i.e., the ratio of the final to initial surface, Sout/Sin, and to verify that this enlargement is responsible of the evaporation rate enhancement. For this purpose, we investigate drops of different initial volumes (5–15 µl) with graphite solid inclusions of different shapes and volumes: 2 × 2 × 1 mm, 2 × 2 × 2 mm, or 2 × 2 × 3 mm. The water surface ratio Sout/Sin is given as function of Vw/Vinc, which is the ratio of initial volume of water drop Vw to the volume of solid graphite inclusion Vinc. The study has shown that the maximum value of the ratio Sout/Sin ≈ 15 can be reached when Vw ∼ Vinc. When, the ratio of Sout/Sin varies in the range 1 to 15. The increase of the evaporating surface is of the highest interest to improve the heat transport and to be used and developed in heat technologies.
KW - Evaporating surface
KW - Explosive breakup
KW - Graphite particles
KW - Heterogeneous drop
KW - High-temperature gases
KW - Water
UR - http://www.scopus.com/inward/record.url?scp=85028732110&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028732110&partnerID=8YFLogxK
U2 - 10.1016/j.applthermaleng.2017.08.162
DO - 10.1016/j.applthermaleng.2017.08.162
M3 - Article
AN - SCOPUS:85028732110
VL - 127
SP - 1340
EP - 1345
JO - Journal of Heat Recovery Systems
JF - Journal of Heat Recovery Systems
SN - 1359-4311
ER -