BPMN task instance streaming for efficient micro-task crowdsourcing processes

Stefano Tranquillini, Florian Daniel, Pavel Kucherbaev, Fabio Casati

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

4 Цитирования (Scopus)


The Business Process Model and Notation (BPMN) is a standard for modeling and executing business processes with human or machine tasks. The semantics of tasks is usually discrete: a task has exactly one start event and one end event; for multi-instance tasks, all instances must complete before an end event is emitted. We propose a new task type and streaming connector for crowdsourcing able to run hundreds or thousands of micro-task instances in parallel. The two constructs provide for task streaming semantics that is new to BPMN, enable the modeling and efficient enactment of complex crowdsourcing scenarios, and are applicable also beyond the special case of crowdsourcing. We implement the necessary design and runtime support on top of Crowd- Flower, demonstrate the viability of the approach via a case study, and report on a set of runtime performance experiments.

Язык оригиналаАнглийский
Название основной публикацииBusiness Process Management - 13th International Conference, BPM 2015, Proceedings
ИздательSpringer Verlag
Число страниц17
ISBN (печатное издание)9783319230627
СостояниеОпубликовано - 2015
Событие13th International Conference on Business Process Management, BPM 2015 - Innsbruck, Австрия
Продолжительность: 31 авг 20153 сен 2015

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349


Конференция13th International Conference on Business Process Management, BPM 2015

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Подробные сведения о темах исследования «BPMN task instance streaming for efficient micro-task crowdsourcing processes». Вместе они формируют уникальный семантический отпечаток (fingerprint).