Automatic detection and classification of abnormal tissues on digital mammograms based on a bag-of-visual-words approach

Erick Rodríguez-Esparza, Laura A. Zanella-Calzada, Diego Oliva, Marco Pérez-Cisneros

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

1 Цитирования (Scopus)

Аннотация

Breast cancer represents the most common type of cancer worldwide among women. One of the most important diagnostic methods of this disease are mammograms, however, the high prevalence of breast cancer has not been reduced due to the incorrect diagnosis of these images, since they can be complex to interpret. An approach that represents a fundamental process for the improvement of this diagnosis is digital image processing, since it can facilitate the interpretation of the images for the specialists. In this work is proposed the implementation of a new multilevel segmentation approach based on the minimum cross-entropy threshold - Harris Hawks Optimization (MCET-HHO) metaheuristic algorithm, identifying regions within the breast that have abnormal tissue. Then, these regions are subjected to an automatic classification system based on a bag-of-visual-words (BoVW) approach to identify healthy tissue, benign tumors, and malignant tumors. According to the results, the classifier reached an average accuracy of 0.86 in the training stage and 0.73 in the testing, proving to be statistically significant in the automatic classification of mammograms, presenting a preliminary tool for the support of specialists in the diagnosis of mammography images.

Язык оригиналаАнглийский
Название основной публикацииMedical Imaging 2020
Подзаголовок основной публикацииComputer-Aided Diagnosis
РедакторыHorst K. Hahn, Maciej A. Mazurowski
ИздательSPIE
ISBN (электронное издание)9781510633957
DOI
СостояниеОпубликовано - 2020
Опубликовано для внешнего пользованияДа
СобытиеMedical Imaging 2020: Computer-Aided Diagnosis - Houston, Соединенные Штаты Америки
Продолжительность: 16 фев 202019 фев 2020

Серия публикаций

НазваниеProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Том11314
ISSN (печатное издание)1605-7422

Конференция

КонференцияMedical Imaging 2020: Computer-Aided Diagnosis
СтранаСоединенные Штаты Америки
ГородHouston
Период16.2.2019.2.20

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Подробные сведения о темах исследования «Automatic detection and classification of abnormal tissues on digital mammograms based on a bag-of-visual-words approach». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Rodríguez-Esparza, E., Zanella-Calzada, L. A., Oliva, D., & Pérez-Cisneros, M. (2020). Automatic detection and classification of abnormal tissues on digital mammograms based on a bag-of-visual-words approach. В H. K. Hahn, & M. A. Mazurowski (Ред.), Medical Imaging 2020: Computer-Aided Diagnosis [1131424] (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Том 11314). SPIE. https://doi.org/10.1117/12.2549899