Atomic layer deposition-developed two-dimensional α-MoO3 windows excellent hydrogen peroxide electrochemical sensing capabilities

Zihan Wei, Zhenyin Hai, Mohammad Karbalaei Akbari, Dongchen Qi, Kaijian Xing, Qing Zhao, Francis Verpoort, Jie Hu, Lachlan Hyde, Serge Zhuiykov

Результат исследований: Материалы для журналаСтатья

12 Цитирования (Scopus)


Two-dimensional (2D) α-MoO3 nano-films with thickness of 4.9 nm were fabricated via atomic layer deposition (ALD) technique for the first time on the wafer scale and were subsequently annealed at 200 °C. The developed MoO3 nano-films were composed of flat nanoparticles with the average size of about 35 nm and possessed layered orthorhombic phase (α-MoO3). The electrochemical sensor based on these 2D α-MoO3 nano-films exhibited great sensitivity of 168.72 μA mM−1 cm−2 to hydrogen peroxide (H2O2) and presented extremely wide linear detection range of 0.4 μM–57.6 mM with the lowest detection limit of 0.076 μM at the signal to noise ratio of 3. Furthermore, due to extremely thin nature of 2D α-MoO3 nano-films ultra-fast response/recovery time of ∼2.0 s was achieved under the wide linear H2O2 detection range. Additionally, the sensor based on 2D α-MoO3 nano-films was also demonstrated great long-term stability, excellent selectivity and high reproducibility. The 2D α-MoO3 nano-films fabricated via ALD technique in this work represent a great opportunity for development of high-performance electrochemical sensors based on 2D transition metal oxides.

Язык оригиналаАнглийский
Страницы (с-по)334-344
Число страниц11
ЖурналSensors and Actuators, B: Chemical
СостояниеОпубликовано - 1 июн 2018


ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry