Approximate Solutions of the One-Dimensional Fisher–Kolmogorov–Petrovskii– Piskunov Equation with Quasilocal Competitive Losses

Результат исследований: Материалы для журналаСтатья

1 Цитирования (Scopus)

Аннотация

The modified Fisher–Kolmogorov–Petrovskii–Piskunov equation with quasilocal quadratic competitive losses and variable coefficients in the small nonlocality parameter approximation is reduced to an equation with a nonlinear diffusion coefficient. Within the framework of a perturbation method, equations are obtained for the first terms of an asymptotic expansion of an approximate solution of the reduced equation. Particular solutions in separating variables are considered for the equations determining the first terms of the asymptotic series. The problem is reduced to an elliptic integral and one linear, homogeneous ordinary differential equation.

Язык оригиналаАнглийский
Страницы (с-по)1461-1468
Число страниц8
ЖурналRussian Physics Journal
Том60
Номер выпуска9
DOI
СостояниеОпубликовано - 1 янв 2018

    Fingerprint

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Цитировать