Application of principal component analysis in dynamic thermal testing data processing

Результат исследований: Материалы для журналаСтатьярецензирование

11 Цитирования (Scopus)


The principles and features of the application of statistical principal component analysis (PCA) in active thermal testing are considered. A comparison between PCA and Fourier analysis in finding defects in composite materials, detecting corrosion in aluminum, and determining moisture content in construction materials is performed. It is concluded that, generally, images of principal components increase the signal-to-noise ratio and are close in performance to phase diagrams; nevertheless, the results of this method are poorly predictable and require further analysis.

Язык оригиналаАнглийский
Страницы (с-по)509-516
Число страниц8
ЖурналRussian Journal of Nondestructive Testing
Номер выпуска7
СостояниеОпубликовано - июл 2008

ASJC Scopus subject areas

  • Mechanical Engineering
  • Mechanics of Materials
  • Condensed Matter Physics
  • Materials Science(all)

Fingerprint Подробные сведения о темах исследования «Application of principal component analysis in dynamic thermal testing data processing». Вместе они формируют уникальный семантический отпечаток (fingerprint).