Analysis of hierarchically-temporal dependencies for handwritten symbols and gestures recognition

Yulia Bolotova, Vladimir Spitsyn

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

4 Цитирования (Scopus)

Выдержка

This work represents a biologically inspired approach to object recognition based on analysis of hierarchical and temporal data dependencies. The article describes the hierarchical temporal memory model (HTM) and its optimization for object recognition task. Optimization includes Gabor and Canny filter image preprocessing, which makes the model suitable for handwritten symbols and gestures recognition; using of additional clustering on the stage of spatial pooling, a new proposed temporal grouping algorithm increases the overall recognition accuracy of the model; a new genetic algorithm was designed for searching the optimal parameters of the model.

Язык оригиналаАнглийский
Название основной публикацииProceedings - 2012 7th International Forum on Strategic Technology, IFOST 2012
DOI
СостояниеОпубликовано - 2012
Событие2012 7th International Forum on Strategic Technology, IFOST 2012 - Tomsk, Российская Федерация
Продолжительность: 18 сен 201221 сен 2012

Другое

Другое2012 7th International Forum on Strategic Technology, IFOST 2012
СтранаРоссийская Федерация
ГородTomsk
Период18.9.1221.9.12

Отпечаток

Gesture recognition
Object recognition
Genetic algorithms
Data storage equipment
Symbol

ASJC Scopus subject areas

  • Management of Technology and Innovation

Цитировать

Bolotova, Y., & Spitsyn, V. (2012). Analysis of hierarchically-temporal dependencies for handwritten symbols and gestures recognition. В Proceedings - 2012 7th International Forum on Strategic Technology, IFOST 2012 [6357628] https://doi.org/10.1109/IFOST.2012.6357628

Analysis of hierarchically-temporal dependencies for handwritten symbols and gestures recognition. / Bolotova, Yulia; Spitsyn, Vladimir.

Proceedings - 2012 7th International Forum on Strategic Technology, IFOST 2012. 2012. 6357628.

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

Bolotova, Y & Spitsyn, V 2012, Analysis of hierarchically-temporal dependencies for handwritten symbols and gestures recognition. в Proceedings - 2012 7th International Forum on Strategic Technology, IFOST 2012., 6357628, 2012 7th International Forum on Strategic Technology, IFOST 2012, Tomsk, Российская Федерация, 18.9.12. https://doi.org/10.1109/IFOST.2012.6357628
Bolotova Y, Spitsyn V. Analysis of hierarchically-temporal dependencies for handwritten symbols and gestures recognition. В Proceedings - 2012 7th International Forum on Strategic Technology, IFOST 2012. 2012. 6357628 https://doi.org/10.1109/IFOST.2012.6357628
Bolotova, Yulia ; Spitsyn, Vladimir. / Analysis of hierarchically-temporal dependencies for handwritten symbols and gestures recognition. Proceedings - 2012 7th International Forum on Strategic Technology, IFOST 2012. 2012.
@inproceedings{8098325f8d6e4507b4dbf1339911e14b,
title = "Analysis of hierarchically-temporal dependencies for handwritten symbols and gestures recognition",
abstract = "This work represents a biologically inspired approach to object recognition based on analysis of hierarchical and temporal data dependencies. The article describes the hierarchical temporal memory model (HTM) and its optimization for object recognition task. Optimization includes Gabor and Canny filter image preprocessing, which makes the model suitable for handwritten symbols and gestures recognition; using of additional clustering on the stage of spatial pooling, a new proposed temporal grouping algorithm increases the overall recognition accuracy of the model; a new genetic algorithm was designed for searching the optimal parameters of the model.",
keywords = "gesture recognition, hierarchical temporal memory, symbols recognition, temporal grouping",
author = "Yulia Bolotova and Vladimir Spitsyn",
year = "2012",
doi = "10.1109/IFOST.2012.6357628",
language = "English",
isbn = "9781467317702",
booktitle = "Proceedings - 2012 7th International Forum on Strategic Technology, IFOST 2012",

}

TY - GEN

T1 - Analysis of hierarchically-temporal dependencies for handwritten symbols and gestures recognition

AU - Bolotova, Yulia

AU - Spitsyn, Vladimir

PY - 2012

Y1 - 2012

N2 - This work represents a biologically inspired approach to object recognition based on analysis of hierarchical and temporal data dependencies. The article describes the hierarchical temporal memory model (HTM) and its optimization for object recognition task. Optimization includes Gabor and Canny filter image preprocessing, which makes the model suitable for handwritten symbols and gestures recognition; using of additional clustering on the stage of spatial pooling, a new proposed temporal grouping algorithm increases the overall recognition accuracy of the model; a new genetic algorithm was designed for searching the optimal parameters of the model.

AB - This work represents a biologically inspired approach to object recognition based on analysis of hierarchical and temporal data dependencies. The article describes the hierarchical temporal memory model (HTM) and its optimization for object recognition task. Optimization includes Gabor and Canny filter image preprocessing, which makes the model suitable for handwritten symbols and gestures recognition; using of additional clustering on the stage of spatial pooling, a new proposed temporal grouping algorithm increases the overall recognition accuracy of the model; a new genetic algorithm was designed for searching the optimal parameters of the model.

KW - gesture recognition

KW - hierarchical temporal memory

KW - symbols recognition

KW - temporal grouping

UR - http://www.scopus.com/inward/record.url?scp=84871823064&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84871823064&partnerID=8YFLogxK

U2 - 10.1109/IFOST.2012.6357628

DO - 10.1109/IFOST.2012.6357628

M3 - Conference contribution

AN - SCOPUS:84871823064

SN - 9781467317702

BT - Proceedings - 2012 7th International Forum on Strategic Technology, IFOST 2012

ER -