Аннотация
The Bubnov-Galerkin method is applied to reduce partial differential equations governing the dynamics of flexible plates and shells to a discrete system with finite degrees of freedom. Chaotic behaviour of systems with various degrees of freedom is analysed. It is shown that the attractor dimension of a system has no relationship with the attractor dimension of any of its subsystems.
Язык оригинала | Английский |
---|---|
Страницы (с-по) | 495-504 |
Число страниц | 10 |
Журнал | Archive of Applied Mechanics |
Том | 73 |
Номер выпуска | 7 |
DOI | |
Состояние | Опубликовано - 1 дек 2003 |
Опубликовано для внешнего пользования | Да |
ASJC Scopus subject areas
- Mechanics of Materials
- Computational Mechanics