Analysis of chaotic vibrations of flexible plates using fast fourier transforms and wavelets

J. Awrejcewicz, A. V. Krysko, I. E. Kutepov, N. A. Zagniboroda, M. V. Zhigalov, V. A. Krysko

Результат исследований: Материалы для журналаСтатьярецензирование

9 Цитирования (Scopus)


In this paper chaotic vibrations of flexible plates of infinite length are studied. The Kirchhoff-Love hypotheses are used to derive the nondimensional partial differential equations governing the plate dynamics. The finite difference method (FDM) and finite element method (FEM) are applied to validate the numerical results. The numerical analysis includes both standard (time histories, fast Fourier Transform, phase portraits, Poincaré sections, Lyapunov exponents) as well as wavelet-based approaches. The latter one includes the so called Gauss 1, Gauss 8, Mexican Hat and Morlet wavelets. In particular, various plate dynamical regimes including the periodic, quasi-periodic, sub-harmonic, chaotic vibrations as well as bifurcations of the plate are illustrated and studied. In addition, the convergence of numerical results obtained via different wavelets is analyzed.

Язык оригиналаАнглийский
Номер статьи1340005
ЖурналInternational Journal of Structural Stability and Dynamics
Номер выпуска7
СостояниеОпубликовано - 1 окт 2013

ASJC Scopus subject areas

  • Mechanical Engineering
  • Civil and Structural Engineering
  • Aerospace Engineering
  • Ocean Engineering
  • Building and Construction
  • Applied Mathematics

Fingerprint Подробные сведения о темах исследования «Analysis of chaotic vibrations of flexible plates using fast fourier transforms and wavelets». Вместе они формируют уникальный семантический отпечаток (fingerprint).