Algorithm for optical handwritten characters recognition based on structural components extraction

P. A. Khaustov, V. G. Spitsyn, E. I. Maksimova

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

4 Цитирования (Scopus)

Аннотация

The algorithm for character topology composition has been proposed. Metrics for character graphs comparison has been suggested. The proposed algorithm has been implemented in character processing application and has been approved on MNIST handwriting characters database and writing characters examples from the forms of a unified state exam.

Язык оригиналаАнглийский
Название основной публикацииProceedings - 2016 11th International Forum on Strategic Technology, IFOST 2016
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы355-358
Число страниц4
ISBN (электронное издание)9781509008551
DOI
СостояниеОпубликовано - 21 мар 2017
Событие11th International Forum on Strategic Technology, IFOST 2016 - Novosibirsk, Российская Федерация
Продолжительность: 1 июн 20163 июн 2016

Конференция

Конференция11th International Forum on Strategic Technology, IFOST 2016
СтранаРоссийская Федерация
ГородNovosibirsk
Период1.6.163.6.16

ASJC Scopus subject areas

  • Ceramics and Composites
  • Computational Mathematics
  • Computer Science Applications
  • Mechanical Engineering
  • Mechanics of Materials
  • Electronic, Optical and Magnetic Materials
  • Control and Optimization

Fingerprint Подробные сведения о темах исследования «Algorithm for optical handwritten characters recognition based on structural components extraction». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Khaustov, P. A., Spitsyn, V. G., & Maksimova, E. I. (2017). Algorithm for optical handwritten characters recognition based on structural components extraction. В Proceedings - 2016 11th International Forum on Strategic Technology, IFOST 2016 (стр. 355-358). [7884126] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/IFOST.2016.7884126