Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition

A. Oukaour, B. Tala-Ighil, B. Pouderoux, M. Tounsi, M. Bouarroudj-Berkani, S. Lefebvre, B. Boudart

Результат исследований: Материалы для журналаСтатья

34 Цитирования (Scopus)

Аннотация

The ageing of power insulated gate bipolar transistor (IGBT) modules is mainly related to thermal and thermomechanical constraints applied to the device. This ageing causes degradation of the device performances and defects appearance which can lead to failures. To avoid these failures, the follow-up of the device operation and the detection of an ageing state remain a priority. This paper presents, at first, ageing tests of 1200 V-30 A IGBT module subjected to power cycling with the aim to highlight online and real-time measurable external indicators of ageing. Secondly, these indicators are used to develop a failure diagnosis method. The diagnosis is realized by artificial training methods based on pattern recognition.

Язык оригиналаАнглийский
Страницы (с-по)386-391
Число страниц6
ЖурналMicroelectronics Reliability
Том51
Номер выпуска2
DOI
СостояниеОпубликовано - 1 фев 2011
Опубликовано для внешнего пользованияДа

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Safety, Risk, Reliability and Quality
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering

Fingerprint Подробные сведения о темах исследования «Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать