A variant of Schwarzian mechanics

Результат исследований: Материалы для журналаСтатья

2 Цитирования (Scopus)

Аннотация

The Schwarzian derivative is invariant under SL(2,R)-transformations and, as thus, any function of it can be used to determine the equation of motion or the Lagrangian density of a higher derivative SL(2,R)-invariant 1d mechanics or the Schwarzian mechanics for short. In this note, we consider the simplest variant which results from setting the Schwarzian derivative to be equal to a dimensionful coupling constant. It is shown that the corresponding dynamical system in general undergoes stable evolution but for one fixed point solution which is only locally stable. Conserved charges associated with the SL(2,R)-symmetry transformations are constructed and a Hamiltonian formulation reproducing them is proposed. An embedding of the Schwarzian mechanics into a larger dynamical system associated with the geodesics of a Brinkmann-like metric obeying the Einstein equations is constructed.

Язык оригиналаАнглийский
Страницы (с-по)661-667
Число страниц7
ЖурналNuclear Physics B
Том936
DOI
СостояниеОпубликовано - 1 ноя 2018

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint Подробные сведения о темах исследования «A variant of Schwarzian mechanics». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать