A machine learning approach for grain crop's seed classification in purifying separation

A. V. Vlasov, A. S. Fadeev

Результат исследований: Материалы для журнала

3 Цитирования (Scopus)

Аннотация

The paper presents a study of the machine learning ability to classify seeds of a grain crop in order to improve purification processing. The main seed features that are hard to separate with mechanical methods are resolved with the use of a machine learning approach. A special training image set was retrieved in order to check if the stated approach is reasonable to use. A set of tests is provided to show the effectiveness of the machine learning for the stated task. The ability to improve the approach with deep learning in further research is described.

Язык оригиналаАнглийский
Номер статьи012177
ЖурналJournal of Physics: Conference Series
Том803
Номер выпуска1
DOI
СостояниеОпубликовано - 1 июл 2017
СобытиеInternational Conference on Information Technologies in Business and Industry 2016 - Tomsk, Российская Федерация
Продолжительность: 21 сен 201623 сен 2016

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «A machine learning approach for grain crop's seed classification in purifying separation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать