Tunneling spectroscopy using a probe qubit

A. J. Berkley, A. J. Przybysz, T. Lanting, R. Harris, N. Dickson, F. Altomare, M. H. Amin, P. Bunyk, C. Enderud, E. Hoskinson, M. W. Johnson, E. Ladizinsky, R. Neufeld, C. Rich, A. Yu Smirnov, E. Tolkacheva, S. Uchaikin, A. B. Wilson

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

We describe a quantum tunneling spectroscopy technique that requires only low-bandwidth control. The method involves coupling a probe qubit to the system under study to create a localized probe state. The energy of the probe state is then scanned with respect to the unperturbed energy levels of the probed system. Incoherent tunneling transitions that flip the state of the probe qubit occur when the energy bias of the probe is close to an eigenenergy of the probed system. Monitoring these transitions allows the reconstruction of the probed system eigenspectrum. We demonstrate this method on an rf SQUID flux qubit.

Original languageEnglish
Article number020502
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume87
Issue number2
DOIs
Publication statusPublished - 3 Jan 2013

Fingerprint

Spectroscopy
probes
spectroscopy
SQUIDs
Electron energy levels
energy levels
Fluxes
bandwidth
Bandwidth
energy
Monitoring

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Electronic, Optical and Magnetic Materials

Cite this

Berkley, A. J., Przybysz, A. J., Lanting, T., Harris, R., Dickson, N., Altomare, F., ... Wilson, A. B. (2013). Tunneling spectroscopy using a probe qubit. Physical Review B - Condensed Matter and Materials Physics, 87(2), [020502]. https://doi.org/10.1103/PhysRevB.87.020502

Tunneling spectroscopy using a probe qubit. / Berkley, A. J.; Przybysz, A. J.; Lanting, T.; Harris, R.; Dickson, N.; Altomare, F.; Amin, M. H.; Bunyk, P.; Enderud, C.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Neufeld, R.; Rich, C.; Smirnov, A. Yu; Tolkacheva, E.; Uchaikin, S.; Wilson, A. B.

In: Physical Review B - Condensed Matter and Materials Physics, Vol. 87, No. 2, 020502, 03.01.2013.

Research output: Contribution to journalArticle

Berkley, AJ, Przybysz, AJ, Lanting, T, Harris, R, Dickson, N, Altomare, F, Amin, MH, Bunyk, P, Enderud, C, Hoskinson, E, Johnson, MW, Ladizinsky, E, Neufeld, R, Rich, C, Smirnov, AY, Tolkacheva, E, Uchaikin, S & Wilson, AB 2013, 'Tunneling spectroscopy using a probe qubit', Physical Review B - Condensed Matter and Materials Physics, vol. 87, no. 2, 020502. https://doi.org/10.1103/PhysRevB.87.020502
Berkley AJ, Przybysz AJ, Lanting T, Harris R, Dickson N, Altomare F et al. Tunneling spectroscopy using a probe qubit. Physical Review B - Condensed Matter and Materials Physics. 2013 Jan 3;87(2). 020502. https://doi.org/10.1103/PhysRevB.87.020502
Berkley, A. J. ; Przybysz, A. J. ; Lanting, T. ; Harris, R. ; Dickson, N. ; Altomare, F. ; Amin, M. H. ; Bunyk, P. ; Enderud, C. ; Hoskinson, E. ; Johnson, M. W. ; Ladizinsky, E. ; Neufeld, R. ; Rich, C. ; Smirnov, A. Yu ; Tolkacheva, E. ; Uchaikin, S. ; Wilson, A. B. / Tunneling spectroscopy using a probe qubit. In: Physical Review B - Condensed Matter and Materials Physics. 2013 ; Vol. 87, No. 2.
@article{601b87eb51844a2bb2e873bc9d76b98a,
title = "Tunneling spectroscopy using a probe qubit",
abstract = "We describe a quantum tunneling spectroscopy technique that requires only low-bandwidth control. The method involves coupling a probe qubit to the system under study to create a localized probe state. The energy of the probe state is then scanned with respect to the unperturbed energy levels of the probed system. Incoherent tunneling transitions that flip the state of the probe qubit occur when the energy bias of the probe is close to an eigenenergy of the probed system. Monitoring these transitions allows the reconstruction of the probed system eigenspectrum. We demonstrate this method on an rf SQUID flux qubit.",
author = "Berkley, {A. J.} and Przybysz, {A. J.} and T. Lanting and R. Harris and N. Dickson and F. Altomare and Amin, {M. H.} and P. Bunyk and C. Enderud and E. Hoskinson and Johnson, {M. W.} and E. Ladizinsky and R. Neufeld and C. Rich and Smirnov, {A. Yu} and E. Tolkacheva and S. Uchaikin and Wilson, {A. B.}",
year = "2013",
month = "1",
day = "3",
doi = "10.1103/PhysRevB.87.020502",
language = "English",
volume = "87",
journal = "Physical Review B",
issn = "0163-1829",
publisher = "American Institute of Physics Publising LLC",
number = "2",

}

TY - JOUR

T1 - Tunneling spectroscopy using a probe qubit

AU - Berkley, A. J.

AU - Przybysz, A. J.

AU - Lanting, T.

AU - Harris, R.

AU - Dickson, N.

AU - Altomare, F.

AU - Amin, M. H.

AU - Bunyk, P.

AU - Enderud, C.

AU - Hoskinson, E.

AU - Johnson, M. W.

AU - Ladizinsky, E.

AU - Neufeld, R.

AU - Rich, C.

AU - Smirnov, A. Yu

AU - Tolkacheva, E.

AU - Uchaikin, S.

AU - Wilson, A. B.

PY - 2013/1/3

Y1 - 2013/1/3

N2 - We describe a quantum tunneling spectroscopy technique that requires only low-bandwidth control. The method involves coupling a probe qubit to the system under study to create a localized probe state. The energy of the probe state is then scanned with respect to the unperturbed energy levels of the probed system. Incoherent tunneling transitions that flip the state of the probe qubit occur when the energy bias of the probe is close to an eigenenergy of the probed system. Monitoring these transitions allows the reconstruction of the probed system eigenspectrum. We demonstrate this method on an rf SQUID flux qubit.

AB - We describe a quantum tunneling spectroscopy technique that requires only low-bandwidth control. The method involves coupling a probe qubit to the system under study to create a localized probe state. The energy of the probe state is then scanned with respect to the unperturbed energy levels of the probed system. Incoherent tunneling transitions that flip the state of the probe qubit occur when the energy bias of the probe is close to an eigenenergy of the probed system. Monitoring these transitions allows the reconstruction of the probed system eigenspectrum. We demonstrate this method on an rf SQUID flux qubit.

UR - http://www.scopus.com/inward/record.url?scp=84872232560&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84872232560&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.87.020502

DO - 10.1103/PhysRevB.87.020502

M3 - Article

VL - 87

JO - Physical Review B

JF - Physical Review B

SN - 0163-1829

IS - 2

M1 - 020502

ER -