Thermally assisted quantum annealing of a 16-qubit problem

N. G. Dickson, M. W. Johnson, M. H. Amin, R. Harris, F. Altomare, A. J. Berkley, P. Bunyk, J. Cai, E. M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J. P. Hilton, E. Hoskinson, K. KarimiE. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M. C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A. B. Wilson, Z. Merali, G. Rose

Research output: Contribution to journalArticle

111 Citations (Scopus)

Abstract

Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system's state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment's effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.

Original languageEnglish
Article number1903
JournalNature Communications
Volume4
DOIs
Publication statusPublished - 12 Jun 2013

Fingerprint

Annealing
Quantum computers
thermal environments
annealing
Noise
Hot Temperature
environment effects
quantum computers
quantum computation
Electron energy levels
central processing units
eigenvectors
energy levels
energy

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this

Dickson, N. G., Johnson, M. W., Amin, M. H., Harris, R., Altomare, F., Berkley, A. J., ... Rose, G. (2013). Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications, 4, [1903]. https://doi.org/10.1038/ncomms2920

Thermally assisted quantum annealing of a 16-qubit problem. / Dickson, N. G.; Johnson, M. W.; Amin, M. H.; Harris, R.; Altomare, F.; Berkley, A. J.; Bunyk, P.; Cai, J.; Chapple, E. M.; Chavez, P.; Cioata, F.; Cirip, T.; Debuen, P.; Drew-Brook, M.; Enderud, C.; Gildert, S.; Hamze, F.; Hilton, J. P.; Hoskinson, E.; Karimi, K.; Ladizinsky, E.; Ladizinsky, N.; Lanting, T.; Mahon, T.; Neufeld, R.; Oh, T.; Perminov, I.; Petroff, C.; Przybysz, A.; Rich, C.; Spear, P.; Tcaciuc, A.; Thom, M. C.; Tolkacheva, E.; Uchaikin, S.; Wang, J.; Wilson, A. B.; Merali, Z.; Rose, G.

In: Nature Communications, Vol. 4, 1903, 12.06.2013.

Research output: Contribution to journalArticle

Dickson, NG, Johnson, MW, Amin, MH, Harris, R, Altomare, F, Berkley, AJ, Bunyk, P, Cai, J, Chapple, EM, Chavez, P, Cioata, F, Cirip, T, Debuen, P, Drew-Brook, M, Enderud, C, Gildert, S, Hamze, F, Hilton, JP, Hoskinson, E, Karimi, K, Ladizinsky, E, Ladizinsky, N, Lanting, T, Mahon, T, Neufeld, R, Oh, T, Perminov, I, Petroff, C, Przybysz, A, Rich, C, Spear, P, Tcaciuc, A, Thom, MC, Tolkacheva, E, Uchaikin, S, Wang, J, Wilson, AB, Merali, Z & Rose, G 2013, 'Thermally assisted quantum annealing of a 16-qubit problem', Nature Communications, vol. 4, 1903. https://doi.org/10.1038/ncomms2920
Dickson NG, Johnson MW, Amin MH, Harris R, Altomare F, Berkley AJ et al. Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications. 2013 Jun 12;4. 1903. https://doi.org/10.1038/ncomms2920
Dickson, N. G. ; Johnson, M. W. ; Amin, M. H. ; Harris, R. ; Altomare, F. ; Berkley, A. J. ; Bunyk, P. ; Cai, J. ; Chapple, E. M. ; Chavez, P. ; Cioata, F. ; Cirip, T. ; Debuen, P. ; Drew-Brook, M. ; Enderud, C. ; Gildert, S. ; Hamze, F. ; Hilton, J. P. ; Hoskinson, E. ; Karimi, K. ; Ladizinsky, E. ; Ladizinsky, N. ; Lanting, T. ; Mahon, T. ; Neufeld, R. ; Oh, T. ; Perminov, I. ; Petroff, C. ; Przybysz, A. ; Rich, C. ; Spear, P. ; Tcaciuc, A. ; Thom, M. C. ; Tolkacheva, E. ; Uchaikin, S. ; Wang, J. ; Wilson, A. B. ; Merali, Z. ; Rose, G. / Thermally assisted quantum annealing of a 16-qubit problem. In: Nature Communications. 2013 ; Vol. 4.
@article{ebe838e147dd41e4a57830b23ebbb86b,
title = "Thermally assisted quantum annealing of a 16-qubit problem",
abstract = "Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system's state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment's effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.",
author = "Dickson, {N. G.} and Johnson, {M. W.} and Amin, {M. H.} and R. Harris and F. Altomare and Berkley, {A. J.} and P. Bunyk and J. Cai and Chapple, {E. M.} and P. Chavez and F. Cioata and T. Cirip and P. Debuen and M. Drew-Brook and C. Enderud and S. Gildert and F. Hamze and Hilton, {J. P.} and E. Hoskinson and K. Karimi and E. Ladizinsky and N. Ladizinsky and T. Lanting and T. Mahon and R. Neufeld and T. Oh and I. Perminov and C. Petroff and A. Przybysz and C. Rich and P. Spear and A. Tcaciuc and Thom, {M. C.} and E. Tolkacheva and S. Uchaikin and J. Wang and Wilson, {A. B.} and Z. Merali and G. Rose",
year = "2013",
month = "6",
day = "12",
doi = "10.1038/ncomms2920",
language = "English",
volume = "4",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",

}

TY - JOUR

T1 - Thermally assisted quantum annealing of a 16-qubit problem

AU - Dickson, N. G.

AU - Johnson, M. W.

AU - Amin, M. H.

AU - Harris, R.

AU - Altomare, F.

AU - Berkley, A. J.

AU - Bunyk, P.

AU - Cai, J.

AU - Chapple, E. M.

AU - Chavez, P.

AU - Cioata, F.

AU - Cirip, T.

AU - Debuen, P.

AU - Drew-Brook, M.

AU - Enderud, C.

AU - Gildert, S.

AU - Hamze, F.

AU - Hilton, J. P.

AU - Hoskinson, E.

AU - Karimi, K.

AU - Ladizinsky, E.

AU - Ladizinsky, N.

AU - Lanting, T.

AU - Mahon, T.

AU - Neufeld, R.

AU - Oh, T.

AU - Perminov, I.

AU - Petroff, C.

AU - Przybysz, A.

AU - Rich, C.

AU - Spear, P.

AU - Tcaciuc, A.

AU - Thom, M. C.

AU - Tolkacheva, E.

AU - Uchaikin, S.

AU - Wang, J.

AU - Wilson, A. B.

AU - Merali, Z.

AU - Rose, G.

PY - 2013/6/12

Y1 - 2013/6/12

N2 - Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system's state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment's effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.

AB - Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system's state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment's effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.

UR - http://www.scopus.com/inward/record.url?scp=84878734196&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878734196&partnerID=8YFLogxK

U2 - 10.1038/ncomms2920

DO - 10.1038/ncomms2920

M3 - Article

C2 - 23695697

AN - SCOPUS:84878734196

VL - 4

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

M1 - 1903

ER -