The torsional fundamental band and high-J rotational spectra of the ground, first and second excited torsional states of acetone

V. Ilyushin, I. Armieieva, O. Dorovskaya, I. Krapivin, E. Alekseev, M. Tudorie, R. A. Motienko, L. Margulès, O. Pirali, E. S. Bekhtereva, S. Bauerecker, C. Maul, C. Sydow, B. J. Drouin

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We present a new global study of the millimeter, submillimeter and far-infrared (FIR) spectra involving the three lowest torsional states of acetone ((CH3)2CO). New microwave measurements have been carried out between 34 and 940 GHz using spectrometers in IRA NASU (Ukraine), and PhLAM Lille (France). The FIR spectrum of acetone has been recorded on the AILES beamline of the SOLEIL synchrotron facility. The new data involving torsion–rotation transitions with J up to 90 and Ka up to 52 were combined with previously published measurements and analyzed using a model developed recently to study the high resolution spectra of molecules with two equivalent methyl rotors and C2v symmetry at equilibrium (PAM_C2v_2tops program). The final fit included 117 parameters to give an overall weighted root-mean-square deviation of 0.85 for the dataset consisting of 29,584 microwave and 1116 FIR line frequencies belonging, respectively, to the three lowest torsional states (ν1217) = (0,0), (1,0), (0,1) and to the observed fundamental band associated with the methyl-top torsion mode (ν1217) = (0,1) ← (0,0). The high values of rotational quantum numbers involved in this study provide an opportunity to test the performance of the PAM_C2v_2tops program approach for the case of highly excited rotational states.

Original languageEnglish
Article number111169
JournalJournal of Molecular Spectroscopy
Volume363
DOIs
Publication statusPublished - 1 Sep 2019

    Fingerprint

Keywords

  • Acetone
  • Methyl top internal rotation
  • Microwave spectrum
  • Torsional fundamental band

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Spectroscopy
  • Physical and Theoretical Chemistry

Cite this

Ilyushin, V., Armieieva, I., Dorovskaya, O., Krapivin, I., Alekseev, E., Tudorie, M., Motienko, R. A., Margulès, L., Pirali, O., Bekhtereva, E. S., Bauerecker, S., Maul, C., Sydow, C., & Drouin, B. J. (2019). The torsional fundamental band and high-J rotational spectra of the ground, first and second excited torsional states of acetone. Journal of Molecular Spectroscopy, 363, [111169]. https://doi.org/10.1016/j.jms.2019.06.008