The model of dynamic inelastic behavior of brittle solids based on the concept of finite fracture time

Aleksandr S. Grigoriev, Evgeny V. Shilko, Vladimir A. Skripnyak, Sergey G. Psakhie

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The paper presents the development of recently proposed kinetic model of dynamic mechanical behavior of brittle solids. The model uses the ideas of kinetic theory of strength to describe the inelastic deformation and fracture. The main feature of the modified dynamic model is the introduction of two relaxation times, which determine the patterns of inelastic deformation under dynamic loading, including the dependences of the values of the cohesion and strain hardening coefficient on the strain rate. These relaxation times have the meaning of a generation time of damage of the smallest ranks and a characteristic time of formation of a system of local damage and cracks of the greatest rank. The advantage of a developed dynamic model is the possibility of its implementation within different conventional models of inelasticity of brittle solids. In the paper we implemented the kinetic model within the classical "quasi-static" Nikolaevsky's plasticity model (non-associated plastic flow rule with the plasticity criterion in the form of Mises-Schleicher). We verified the model and determined its parameters by the example of high-strength concrete. The developed dynamic model can be implemented within the framework of various Lagrangian numerical methods (including finite and discrete element methods) using an explicit integration scheme.

Original languageEnglish
Title of host publicationProceedings of the Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures
EditorsVasily M. Fomin, Victor E. Panin, Sergey G. Psakhie
PublisherAmerican Institute of Physics Inc.
Volume2051
ISBN (Electronic)9780735417779
DOIs
Publication statusPublished - 12 Dec 2018
EventInternational Symposium on Hierarchical Materials: Development and Applications for New Technologies and Reliable Structures 2018 - Tomsk, Russian Federation
Duration: 1 Oct 20185 Oct 2018

Conference

ConferenceInternational Symposium on Hierarchical Materials: Development and Applications for New Technologies and Reliable Structures 2018
CountryRussian Federation
CityTomsk
Period1.10.185.10.18

Fingerprint

dynamic models
plastic properties
relaxation time
damage
plastic flow
strain hardening
cohesion
kinetics
high strength
kinetic theory
hardening
strain rate
cracks
coefficients

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Grigoriev, A. S., Shilko, E. V., Skripnyak, V. A., & Psakhie, S. G. (2018). The model of dynamic inelastic behavior of brittle solids based on the concept of finite fracture time. In V. M. Fomin, V. E. Panin, & S. G. Psakhie (Eds.), Proceedings of the Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures (Vol. 2051). [020102] American Institute of Physics Inc.. https://doi.org/10.1063/1.5083345

The model of dynamic inelastic behavior of brittle solids based on the concept of finite fracture time. / Grigoriev, Aleksandr S.; Shilko, Evgeny V.; Skripnyak, Vladimir A.; Psakhie, Sergey G.

Proceedings of the Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures. ed. / Vasily M. Fomin; Victor E. Panin; Sergey G. Psakhie. Vol. 2051 American Institute of Physics Inc., 2018. 020102.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Grigoriev, AS, Shilko, EV, Skripnyak, VA & Psakhie, SG 2018, The model of dynamic inelastic behavior of brittle solids based on the concept of finite fracture time. in VM Fomin, VE Panin & SG Psakhie (eds), Proceedings of the Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures. vol. 2051, 020102, American Institute of Physics Inc., International Symposium on Hierarchical Materials: Development and Applications for New Technologies and Reliable Structures 2018, Tomsk, Russian Federation, 1.10.18. https://doi.org/10.1063/1.5083345
Grigoriev AS, Shilko EV, Skripnyak VA, Psakhie SG. The model of dynamic inelastic behavior of brittle solids based on the concept of finite fracture time. In Fomin VM, Panin VE, Psakhie SG, editors, Proceedings of the Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures. Vol. 2051. American Institute of Physics Inc. 2018. 020102 https://doi.org/10.1063/1.5083345
Grigoriev, Aleksandr S. ; Shilko, Evgeny V. ; Skripnyak, Vladimir A. ; Psakhie, Sergey G. / The model of dynamic inelastic behavior of brittle solids based on the concept of finite fracture time. Proceedings of the Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures. editor / Vasily M. Fomin ; Victor E. Panin ; Sergey G. Psakhie. Vol. 2051 American Institute of Physics Inc., 2018.
@inproceedings{3909763bf4f140449878c1dc4a751926,
title = "The model of dynamic inelastic behavior of brittle solids based on the concept of finite fracture time",
abstract = "The paper presents the development of recently proposed kinetic model of dynamic mechanical behavior of brittle solids. The model uses the ideas of kinetic theory of strength to describe the inelastic deformation and fracture. The main feature of the modified dynamic model is the introduction of two relaxation times, which determine the patterns of inelastic deformation under dynamic loading, including the dependences of the values of the cohesion and strain hardening coefficient on the strain rate. These relaxation times have the meaning of a generation time of damage of the smallest ranks and a characteristic time of formation of a system of local damage and cracks of the greatest rank. The advantage of a developed dynamic model is the possibility of its implementation within different conventional models of inelasticity of brittle solids. In the paper we implemented the kinetic model within the classical {"}quasi-static{"} Nikolaevsky's plasticity model (non-associated plastic flow rule with the plasticity criterion in the form of Mises-Schleicher). We verified the model and determined its parameters by the example of high-strength concrete. The developed dynamic model can be implemented within the framework of various Lagrangian numerical methods (including finite and discrete element methods) using an explicit integration scheme.",
author = "Grigoriev, {Aleksandr S.} and Shilko, {Evgeny V.} and Skripnyak, {Vladimir A.} and Psakhie, {Sergey G.}",
year = "2018",
month = "12",
day = "12",
doi = "10.1063/1.5083345",
language = "English",
volume = "2051",
editor = "Fomin, {Vasily M.} and Panin, {Victor E.} and Psakhie, {Sergey G.}",
booktitle = "Proceedings of the Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures",
publisher = "American Institute of Physics Inc.",

}

TY - GEN

T1 - The model of dynamic inelastic behavior of brittle solids based on the concept of finite fracture time

AU - Grigoriev, Aleksandr S.

AU - Shilko, Evgeny V.

AU - Skripnyak, Vladimir A.

AU - Psakhie, Sergey G.

PY - 2018/12/12

Y1 - 2018/12/12

N2 - The paper presents the development of recently proposed kinetic model of dynamic mechanical behavior of brittle solids. The model uses the ideas of kinetic theory of strength to describe the inelastic deformation and fracture. The main feature of the modified dynamic model is the introduction of two relaxation times, which determine the patterns of inelastic deformation under dynamic loading, including the dependences of the values of the cohesion and strain hardening coefficient on the strain rate. These relaxation times have the meaning of a generation time of damage of the smallest ranks and a characteristic time of formation of a system of local damage and cracks of the greatest rank. The advantage of a developed dynamic model is the possibility of its implementation within different conventional models of inelasticity of brittle solids. In the paper we implemented the kinetic model within the classical "quasi-static" Nikolaevsky's plasticity model (non-associated plastic flow rule with the plasticity criterion in the form of Mises-Schleicher). We verified the model and determined its parameters by the example of high-strength concrete. The developed dynamic model can be implemented within the framework of various Lagrangian numerical methods (including finite and discrete element methods) using an explicit integration scheme.

AB - The paper presents the development of recently proposed kinetic model of dynamic mechanical behavior of brittle solids. The model uses the ideas of kinetic theory of strength to describe the inelastic deformation and fracture. The main feature of the modified dynamic model is the introduction of two relaxation times, which determine the patterns of inelastic deformation under dynamic loading, including the dependences of the values of the cohesion and strain hardening coefficient on the strain rate. These relaxation times have the meaning of a generation time of damage of the smallest ranks and a characteristic time of formation of a system of local damage and cracks of the greatest rank. The advantage of a developed dynamic model is the possibility of its implementation within different conventional models of inelasticity of brittle solids. In the paper we implemented the kinetic model within the classical "quasi-static" Nikolaevsky's plasticity model (non-associated plastic flow rule with the plasticity criterion in the form of Mises-Schleicher). We verified the model and determined its parameters by the example of high-strength concrete. The developed dynamic model can be implemented within the framework of various Lagrangian numerical methods (including finite and discrete element methods) using an explicit integration scheme.

UR - http://www.scopus.com/inward/record.url?scp=85059034098&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85059034098&partnerID=8YFLogxK

U2 - 10.1063/1.5083345

DO - 10.1063/1.5083345

M3 - Conference contribution

VL - 2051

BT - Proceedings of the Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures

A2 - Fomin, Vasily M.

A2 - Panin, Victor E.

A2 - Psakhie, Sergey G.

PB - American Institute of Physics Inc.

ER -