The Kalguty complex deposit, the Gorny Altai

Mineralogical and geochemical characteristics and fluid regime of ore formation

A. A. Potseluev, D. I. Babkin, V. I. Kotegov

    Research output: Contribution to journalArticle

    4 Citations (Scopus)

    Abstract

    The results of detailed mineralogical, geochemical, and thermobarogeochemical studies of the Kalguty complex greisen deposit are presented. The chemical compositions of ore veins, greisens, and other geological bodies have been determined. A wide range of chemical elements from Li to U (48 elements, including noble metals and REE) has been determined in ore minerals. Graphite in association with quartz and sulfides was identified in ore veins for the first time. Graphite is enriched in a light carbon isotope. The δ13C value varies from -26.3 ± 0.4 to -26.6 ± 0.3‰. High Au, Ag, Hg, Te, Sb, Bi, Cu, Pb, Zn, Fe, and S contents were detected in graphite grains with a microprobe. The graphite content increases regularly with depth; the spatial correlation of graphite with W, Mo, Cu, Au, Pt, Pd, and other metals is established. The highest Au, Ag, Pt, Pd, and Os contents are characteristic of minor intrusions of albitized granite porphyry (γπ2J1vk), intramineral dikes of hydrothermally altered kalgutite (γπ3 J1vk), ore veins, their greisen selvages, and autonomous ore-bearing greisen bodies of the Mo stock type. Gold occurs in native form, while silver is contained largely in sulfides and sulfosalts. High PGE contents are characteristic of pyrite, wolframite, and molybdenite. The major components of fluid inclusions in quartz (H2O, CO2, CO, and H2) have been studied, as well as hydrocarbons (CH4, C2H6, C3 H8, C4H10, C5H12, C6H14, C2H2, and C2H4) contained therein. Two-phase fluid inclusions are predominant, while single-and three-phase inclusions are less abundant. The homogenization temperatures of primary and secondary inclusions are 290-340 and 140-160°C, respectively. The concentration of dissolved salts (NaCl and KCl) in two-phase inclusions amounts to 11.6-14.0%. The H2O and CO2 contents decrease with depth, whereas the CO, H2, and HC concentrations increase in the same direction. Graphite is regarded as a product of reactions with participation of fluid (gas) components. The ore mineralization was formed under contrasting conditions related to the oxidation of a primary reduced deep metalliferous fluid.

    Original languageEnglish
    Pages (from-to)384-401
    Number of pages18
    JournalGeology of Ore Deposits
    Volume48
    Issue number5
    DOIs
    Publication statusPublished - 1 Jan 2006

    Fingerprint

    Graphite
    graphite
    Ores
    greisen
    Deposits
    Fluids
    fluid
    Quartz
    Sulfides
    Carbon Monoxide
    Chemical elements
    fluid inclusion
    Bearings (structural)
    sulfide
    Carbon Isotopes
    quartz
    sulfosalt group
    wolframite
    Levees
    molybdenite

    ASJC Scopus subject areas

    • Geology
    • Geochemistry and Petrology

    Cite this

    The Kalguty complex deposit, the Gorny Altai : Mineralogical and geochemical characteristics and fluid regime of ore formation. / Potseluev, A. A.; Babkin, D. I.; Kotegov, V. I.

    In: Geology of Ore Deposits, Vol. 48, No. 5, 01.01.2006, p. 384-401.

    Research output: Contribution to journalArticle

    @article{990c9ee4b5474f7d9cbb84a19c2d2a17,
    title = "The Kalguty complex deposit, the Gorny Altai: Mineralogical and geochemical characteristics and fluid regime of ore formation",
    abstract = "The results of detailed mineralogical, geochemical, and thermobarogeochemical studies of the Kalguty complex greisen deposit are presented. The chemical compositions of ore veins, greisens, and other geological bodies have been determined. A wide range of chemical elements from Li to U (48 elements, including noble metals and REE) has been determined in ore minerals. Graphite in association with quartz and sulfides was identified in ore veins for the first time. Graphite is enriched in a light carbon isotope. The δ13C value varies from -26.3 ± 0.4 to -26.6 ± 0.3‰. High Au, Ag, Hg, Te, Sb, Bi, Cu, Pb, Zn, Fe, and S contents were detected in graphite grains with a microprobe. The graphite content increases regularly with depth; the spatial correlation of graphite with W, Mo, Cu, Au, Pt, Pd, and other metals is established. The highest Au, Ag, Pt, Pd, and Os contents are characteristic of minor intrusions of albitized granite porphyry (γπ2J1vk), intramineral dikes of hydrothermally altered kalgutite (γπ3 J1vk), ore veins, their greisen selvages, and autonomous ore-bearing greisen bodies of the Mo stock type. Gold occurs in native form, while silver is contained largely in sulfides and sulfosalts. High PGE contents are characteristic of pyrite, wolframite, and molybdenite. The major components of fluid inclusions in quartz (H2O, CO2, CO, and H2) have been studied, as well as hydrocarbons (CH4, C2H6, C3 H8, C4H10, C5H12, C6H14, C2H2, and C2H4) contained therein. Two-phase fluid inclusions are predominant, while single-and three-phase inclusions are less abundant. The homogenization temperatures of primary and secondary inclusions are 290-340 and 140-160°C, respectively. The concentration of dissolved salts (NaCl and KCl) in two-phase inclusions amounts to 11.6-14.0{\%}. The H2O and CO2 contents decrease with depth, whereas the CO, H2, and HC concentrations increase in the same direction. Graphite is regarded as a product of reactions with participation of fluid (gas) components. The ore mineralization was formed under contrasting conditions related to the oxidation of a primary reduced deep metalliferous fluid.",
    author = "Potseluev, {A. A.} and Babkin, {D. I.} and Kotegov, {V. I.}",
    year = "2006",
    month = "1",
    day = "1",
    doi = "10.1134/S1075701506050047",
    language = "English",
    volume = "48",
    pages = "384--401",
    journal = "Geology of Ore Deposits",
    issn = "1075-7015",
    publisher = "Maik Nauka-Interperiodica Publishing",
    number = "5",

    }

    TY - JOUR

    T1 - The Kalguty complex deposit, the Gorny Altai

    T2 - Mineralogical and geochemical characteristics and fluid regime of ore formation

    AU - Potseluev, A. A.

    AU - Babkin, D. I.

    AU - Kotegov, V. I.

    PY - 2006/1/1

    Y1 - 2006/1/1

    N2 - The results of detailed mineralogical, geochemical, and thermobarogeochemical studies of the Kalguty complex greisen deposit are presented. The chemical compositions of ore veins, greisens, and other geological bodies have been determined. A wide range of chemical elements from Li to U (48 elements, including noble metals and REE) has been determined in ore minerals. Graphite in association with quartz and sulfides was identified in ore veins for the first time. Graphite is enriched in a light carbon isotope. The δ13C value varies from -26.3 ± 0.4 to -26.6 ± 0.3‰. High Au, Ag, Hg, Te, Sb, Bi, Cu, Pb, Zn, Fe, and S contents were detected in graphite grains with a microprobe. The graphite content increases regularly with depth; the spatial correlation of graphite with W, Mo, Cu, Au, Pt, Pd, and other metals is established. The highest Au, Ag, Pt, Pd, and Os contents are characteristic of minor intrusions of albitized granite porphyry (γπ2J1vk), intramineral dikes of hydrothermally altered kalgutite (γπ3 J1vk), ore veins, their greisen selvages, and autonomous ore-bearing greisen bodies of the Mo stock type. Gold occurs in native form, while silver is contained largely in sulfides and sulfosalts. High PGE contents are characteristic of pyrite, wolframite, and molybdenite. The major components of fluid inclusions in quartz (H2O, CO2, CO, and H2) have been studied, as well as hydrocarbons (CH4, C2H6, C3 H8, C4H10, C5H12, C6H14, C2H2, and C2H4) contained therein. Two-phase fluid inclusions are predominant, while single-and three-phase inclusions are less abundant. The homogenization temperatures of primary and secondary inclusions are 290-340 and 140-160°C, respectively. The concentration of dissolved salts (NaCl and KCl) in two-phase inclusions amounts to 11.6-14.0%. The H2O and CO2 contents decrease with depth, whereas the CO, H2, and HC concentrations increase in the same direction. Graphite is regarded as a product of reactions with participation of fluid (gas) components. The ore mineralization was formed under contrasting conditions related to the oxidation of a primary reduced deep metalliferous fluid.

    AB - The results of detailed mineralogical, geochemical, and thermobarogeochemical studies of the Kalguty complex greisen deposit are presented. The chemical compositions of ore veins, greisens, and other geological bodies have been determined. A wide range of chemical elements from Li to U (48 elements, including noble metals and REE) has been determined in ore minerals. Graphite in association with quartz and sulfides was identified in ore veins for the first time. Graphite is enriched in a light carbon isotope. The δ13C value varies from -26.3 ± 0.4 to -26.6 ± 0.3‰. High Au, Ag, Hg, Te, Sb, Bi, Cu, Pb, Zn, Fe, and S contents were detected in graphite grains with a microprobe. The graphite content increases regularly with depth; the spatial correlation of graphite with W, Mo, Cu, Au, Pt, Pd, and other metals is established. The highest Au, Ag, Pt, Pd, and Os contents are characteristic of minor intrusions of albitized granite porphyry (γπ2J1vk), intramineral dikes of hydrothermally altered kalgutite (γπ3 J1vk), ore veins, their greisen selvages, and autonomous ore-bearing greisen bodies of the Mo stock type. Gold occurs in native form, while silver is contained largely in sulfides and sulfosalts. High PGE contents are characteristic of pyrite, wolframite, and molybdenite. The major components of fluid inclusions in quartz (H2O, CO2, CO, and H2) have been studied, as well as hydrocarbons (CH4, C2H6, C3 H8, C4H10, C5H12, C6H14, C2H2, and C2H4) contained therein. Two-phase fluid inclusions are predominant, while single-and three-phase inclusions are less abundant. The homogenization temperatures of primary and secondary inclusions are 290-340 and 140-160°C, respectively. The concentration of dissolved salts (NaCl and KCl) in two-phase inclusions amounts to 11.6-14.0%. The H2O and CO2 contents decrease with depth, whereas the CO, H2, and HC concentrations increase in the same direction. Graphite is regarded as a product of reactions with participation of fluid (gas) components. The ore mineralization was formed under contrasting conditions related to the oxidation of a primary reduced deep metalliferous fluid.

    UR - http://www.scopus.com/inward/record.url?scp=34250715005&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=34250715005&partnerID=8YFLogxK

    U2 - 10.1134/S1075701506050047

    DO - 10.1134/S1075701506050047

    M3 - Article

    VL - 48

    SP - 384

    EP - 401

    JO - Geology of Ore Deposits

    JF - Geology of Ore Deposits

    SN - 1075-7015

    IS - 5

    ER -