The formation of composite Ti-Al-N coatings using filtered vacuum arc deposition with separate cathodes

Ivan A. Shulepov, Egor B. Kashkarov, Igor B. Stepanov, Maxim S. Syrtanov, Alina N. Sutygina, Ivan Shanenkov, Aleksei Obrosov, Sabine Weiß

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD) during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron microscopy (TEM) and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220) direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220) reflex to a higher 2θ angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa) and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests.

Original languageEnglish
Article number497
Issue number11
Publication statusPublished - 12 Nov 2017


  • Deposition
  • Filtered vacuum arc
  • Hardness
  • Phase composition
  • Separate cathodes
  • TiAlN
  • Wear-resistance

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint Dive into the research topics of 'The formation of composite Ti-Al-N coatings using filtered vacuum arc deposition with separate cathodes'. Together they form a unique fingerprint.

Cite this