Temperature fields of the droplets and gases mixture

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


In this research, we obtain gas-vapor mixture temperature fields generated by blending droplets and high-temperature combustion products. Similar experiments are conducted for droplet injection into heated air flow. This kind of measurement is essential for high-temperature and high-speed processes in contact heat exchangers or in liquid treatment chambers, as well as in firefighting systems. Experiments are conducted using an optical system based on Laser-Induced Phosphorescence as well as two types of thermocouples with a similar measurement range but different response times (0.1-3 s) and accuracy (1-5 °C). In our experiments, we inject droplets into the heated air flow (first scheme) and into the flow of high-temperature combustion products (second scheme). We concentrate on the unsteady inhomogeneous temperature fields of the gas-vapor mixture produced by blending the above-mentioned flows and monitoring the lifetime of the relatively low gas temperature after droplets passes through the observation area. The scientific novelty of this research comes fromthe first ever comparison of the temperature measurements of a gas-vapor-droplet mixture obtained by contact and non-contact systems. The advantages and limitations of the contact and non-contact techniques are defined for the measurement of gas-vapor mixture temperature.

Original languageEnglish
Article number2212
JournalApplied Sciences (Switzerland)
Issue number7
Publication statusPublished - 1 Apr 2020


  • Droplets
  • Gas-vapor mixture
  • High-temperature combustion products
  • Laser induced phosphorescence
  • Temperature field
  • Unsteady heat transfer

ASJC Scopus subject areas

  • Materials Science(all)
  • Instrumentation
  • Engineering(all)
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Temperature fields of the droplets and gases mixture'. Together they form a unique fingerprint.

Cite this