Tangential cathode magnetic field and substrate bias influence on copper vacuum arc macroparticle content decreasing

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

The paper presents the results of an experimental study of accumulation of copper macroparticles (MP) on a negatively biased substrate immersed in DC vacuum arc plasma. The influence of normal and tangential magnetic fields and high-frequency short-pulsed negative bias was investigated. The joint application of a tangential magnetic field and high frequency short-pulsed negative bias provides an effect of MP multifold suppression. With a tangential magnetic field strength of 175 Gs and repetitively pulsed bias (7 μs, 105 p.p.s., − 2 kV), total suppression efficiency is 250-fold after 6 min of ion-plasma treatment. For macroparticles with the diameter of less or > 1 μm, the efficiency is 3000-fold or 70-fold, respectively. In comparison with an axisymmetric vacuum-arc plasma source, the application of a steered arc ensures a 10-fold reduction in MP density on a substrate immersed in copper vacuum-arc plasma. The possibility of ion implantation using low-energy high-frequency short-pulse plasma immersion by implementing DC vacuum arc plasma is discussed.

Original languageEnglish
Pages (from-to)21-24
Number of pages4
JournalSurface and Coatings Technology
Volume306
DOIs
Publication statusPublished - 25 Nov 2016

    Fingerprint

Keywords

  • High-frequency short-pulse negative bias potential
  • Macroparticles
  • Steered arc
  • Vacuum-arc plasma

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Cite this