TY - JOUR
T1 - Synthesis of novel copper ion-selective material based on hierarchically imprinted cross-linked poly(acrylamide-co-ethylene glycol dimethacrylate)
AU - Germiniano, Talitha Oliveira
AU - Corazza, Marcela Zanetti
AU - Segatelli, Mariana Gava
AU - Ribeiro, Emerson Schwingel
AU - Yabe, Maria Josefa Santos
AU - Galunin, Evgeny
AU - Tarley, César Ricardo Teixeira
PY - 2014/9
Y1 - 2014/9
N2 - A novel hierarchically imprinted cross-linked poly(acrylamide-co-ethylene glycol dimethacrylate) using a double-imprinting approach for the Cu 2+ selective separation from aqueous medium was prepared. In the imprinting process, both Cu2+ ions and surfactant micelles (cetyltrimethylammonium bromide - CTAB) were employed as templates. The hierarchically imprinted organic polymer named (IIP-CTAB), single-imprinted (IIP-no CTAB) and non-imprinted (NIP-CTAB and NIP-no CTAB) polymers were characterized by SEM, FTIR, TG, elemental analysis and textural data from BET (Brunauer-Emmett-Teller) and BJH (Barrett-Joyner-Halenda). Compared to these materials, IIP-CTAB showed higher selectivity, specific surface area and adsorption capacity toward Cu2+ ions. Good selectivity for Cu 2+ was obtained for the Cu2+/Cd2+, Cu 2+/Zn2+ and Cu2+/Co2+ systems when IIP-CTAB was compared to the single-imprinted (IIP-no CTAB) and non double-imprinted polymer (NIP-CTAB), thereby confirming the improvement in the polymer selectivity due to double-imprinting effect. For adsorption kinetic data, the best fit was provided with the pseudo-second-order model for the four materials, thereby indicating the chemical nature of the Cu2+ adsorption process. Cu2+ adsorption under equilibrium was found to follow dual-site Langmuir-Freundlich model isotherm, thus suggesting the existence of adsorption sites with low and high binding energy on the adsorbent surface. From column experiments 600 adsorption-desorption cycles using 1.8 mol L-1 HNO3 as eluent confirmed the great recoverability of adsorbent. The synthesis approach here investigated has been found to be very attractive for the designing of organic ion imprinted polymer and can be expanded to the other polymers to improve performance of ion imprinted polymers in the field of solid phase extraction.
AB - A novel hierarchically imprinted cross-linked poly(acrylamide-co-ethylene glycol dimethacrylate) using a double-imprinting approach for the Cu 2+ selective separation from aqueous medium was prepared. In the imprinting process, both Cu2+ ions and surfactant micelles (cetyltrimethylammonium bromide - CTAB) were employed as templates. The hierarchically imprinted organic polymer named (IIP-CTAB), single-imprinted (IIP-no CTAB) and non-imprinted (NIP-CTAB and NIP-no CTAB) polymers were characterized by SEM, FTIR, TG, elemental analysis and textural data from BET (Brunauer-Emmett-Teller) and BJH (Barrett-Joyner-Halenda). Compared to these materials, IIP-CTAB showed higher selectivity, specific surface area and adsorption capacity toward Cu2+ ions. Good selectivity for Cu 2+ was obtained for the Cu2+/Cd2+, Cu 2+/Zn2+ and Cu2+/Co2+ systems when IIP-CTAB was compared to the single-imprinted (IIP-no CTAB) and non double-imprinted polymer (NIP-CTAB), thereby confirming the improvement in the polymer selectivity due to double-imprinting effect. For adsorption kinetic data, the best fit was provided with the pseudo-second-order model for the four materials, thereby indicating the chemical nature of the Cu2+ adsorption process. Cu2+ adsorption under equilibrium was found to follow dual-site Langmuir-Freundlich model isotherm, thus suggesting the existence of adsorption sites with low and high binding energy on the adsorbent surface. From column experiments 600 adsorption-desorption cycles using 1.8 mol L-1 HNO3 as eluent confirmed the great recoverability of adsorbent. The synthesis approach here investigated has been found to be very attractive for the designing of organic ion imprinted polymer and can be expanded to the other polymers to improve performance of ion imprinted polymers in the field of solid phase extraction.
KW - Adsorption studies
KW - Hierarchically imprinted organic polymer
KW - Isotherm
KW - Kinetics
KW - Selectivity
UR - http://www.scopus.com/inward/record.url?scp=84903714771&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903714771&partnerID=8YFLogxK
U2 - 10.1016/j.reactfunctpolym.2014.05.012
DO - 10.1016/j.reactfunctpolym.2014.05.012
M3 - Article
AN - SCOPUS:84903714771
VL - 82
SP - 72
EP - 80
JO - Reactive and Functional Polymers
JF - Reactive and Functional Polymers
SN - 1381-5148
ER -