Surface modification of tini dental implants by ion- and electron beam influence

L. L. Meisner, V. P. Sivokha, A. I. Lotkov, B. P. Gritsenko, V. P. Rotshtein, K. V. Karlick, V. V. Razdorskii, M. V. Kotenko

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

The paper reports experimental results on elemental and structural phase compositions of thin surface layers and physical-mechanical behavior of the TiNi dental implants processed by the high-dose ion (Ti, Zr, Pd, Si, etc.) implantation (HDII) and the pulsed electron beam melting. The types of implanted ions and irradiation doses were varied from 0.7-1016 cm-2 till 5.6-1017 cm2. The energy of all ions equals 60 keV. The low- energy (̃30keV) high current (̃30 kA) electron beam (3-10 J/cm2, LEHCEB) pulsed with 2-3 μs in time length have been used. Surface characterization of the implants was performed with the assistance of Auger electron spectroscopy, X-ray diffraction and grazing incidence analysis. HDII treatment of the implant surfaces is accompanied by deep surface oxidation. The thickness of the layer containing Si-ions is almost twice as large as the thickness of Ti49.5Ni50.5 layers that contain metal implanted ions (Ti, Zr, Pd). Nickel is missing in the surface layer down to a depth of ̃3O-40 nm in the ion-modified samples. LEHCEBs influence of the TiNi implants does not change the Ni, Ti and 0 concentration-depth profiles, but microhardness of the surface layer (̃300 nm depth) modified by LEHCEB is fifth as higher as of the initial state. All TiNi implants treated by HDII and LEHCEBs have higher corrosion stability than the electropolished implants.

Original languageEnglish
Title of host publicationSMST-2006 - Proceedings of the International Conference on Shape Memory and Superelastic Technologies
Pages235-242
Number of pages8
DOIs
Publication statusPublished - 2008
Externally publishedYes
EventInternational Conference on Shape Memory and Superelastic Technologies, SMST-2006 - Pacific Grove, CA, United States
Duration: 7 May 200611 May 2006

Publication series

NameSMST-2006 - Proceedings of the International Conference on Shape Memory and Superelastic Technologies

Conference

ConferenceInternational Conference on Shape Memory and Superelastic Technologies, SMST-2006
CountryUnited States
CityPacific Grove, CA
Period7.5.0611.5.06

ASJC Scopus subject areas

  • Materials Chemistry
  • Polymers and Plastics

Fingerprint Dive into the research topics of 'Surface modification of tini dental implants by ion- and electron beam influence'. Together they form a unique fingerprint.

Cite this