Study on internal stress damage detection in long-distance oil and gas pipelines via weak magnetic method

Bin Liu, Luyao He, Zeyu Ma, Hai Zhang, Stefano Sfarra, Henrique Fernandes, Stefano Perilli

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Weak magnetic stress detection is an important issue in oil–gas pipeline internal detection area. In order to verify the characteristics of weak magnetic stress internal detection signals, we built herein a magneto-mechanics equivalent model having a balanced magnetic field. First, we calculated the relationship between the stress and the weak magnetic signals; consequently, the analysis propagation laws of the weak magnetic signals with non-magnetic saturation were pointed out. Finally, the theoretical model was validated by a systematic experimental research. The analytical results show that a one-to-one linear link between the weak magnetic signals and the stress concentration is clear. Instead, the change of the weak magnetic signals with the liftoff is nonlinear, therefore we are proposing the Boltzmann liftoff correction factor whose degree of adaptability of the equivalent model can reach the value of 94%. It is possible to note that when the liftoff is in the approximate linear stage, the relevance ratio and the recognition rate of the magneto-mechanics curve show a high-quality. This conclusion is important in the engineering field for the set of the liftoff.

Original languageEnglish
JournalISA Transactions
Publication statusAccepted/In press - 1 Jan 2019


  • Liftoff
  • Linear
  • Magneto-mechanics equivalent model
  • Pipe
  • Stress concentration

ASJC Scopus subject areas

  • Instrumentation
  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Study on internal stress damage detection in long-distance oil and gas pipelines via weak magnetic method'. Together they form a unique fingerprint.

Cite this