Solid-phase formation of li-zn ferrite under high-energy impact

Research output: Contribution to journalArticlepeer-review


The effect of complex high-energy action, including mechanical milling of Li2CO3-Fe2O3-ZnO initial reagents mixture and its consistent heating by the pulsed electron beam on solid-phase synthesis was studied by X-ray powder diffraction and thermal analyses. The initial mixture Li2CO3-Fe2O3-ZnO corresponds to the ferrite with stoichiometric formula: Li0.5(1–x)ZnxFe2.5–0.5xО4, where х = 0.2. The same studies were carried out with thermal heating in a laboratory furnace for detection the effect of radiation on the formation of phase composition lithium-zinc ferrite. Initial mixture was milled in AGO-2S planetary ball mill with a milling speed of 2220 rpm for 60 min. Radiation-thermal synthesis of the milled mixture was carried out by the pulsed electron accelerator (ILU-6) at 600°C and 750°C. The maximum time of the isothermal stage was 60 minutes. According to the X-ray powder diffraction and thermogravimetric analysis, it was found that the complex high-energy action leads to decrease a temperature and time of obtaining lithium-zinc ferrite homogeneous in phase composition. The proposed high-energy regimes allow to synthesized lithium-zinc ferrites at 600 °C for 60 minutes, which is much lower compared to conventional ceramic technology.

Original languageEnglish
Pages (from-to)250-256
Number of pages7
JournalMaterials Science Forum
Publication statusPublished - 2019


  • Impulse electron beam
  • Lithium ferrites
  • Mechanical milling
  • Thermal analysis
  • X-ray powder diffraction

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Solid-phase formation of li-zn ferrite under high-energy impact'. Together they form a unique fingerprint.

Cite this