Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at √s=13 TeV

The CMS collaboration

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

A search for dark matter produced in association with top quarks in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The data set used corresponds to an integrated luminosity of 35.9 fb −1 recorded with the CMS detector at the LHC. Whereas previous searches for neutral scalar or pseudoscalar mediators considered dark matter production in association with a top quark pair only, this analysis also includes production modes with a single top quark. The results are derived from the combination of multiple selection categories that are defined to target either the single top quark or the top quark pair signature. No significant deviations with respect to the standard model predictions are observed. The results are interpreted in the context of a simplified model in which a scalar or pseudoscalar mediator particle couples to a top quark and subsequently decays into dark matter particles. Scalar and pseudoscalar mediator particles with masses below 290 and 300 GeV, respectively, are excluded at 95% confidence level, assuming a dark matter particle mass of 1 GeV and mediator couplings to fermions and dark matter particles equal to unity.[Figure not available: see fulltext.].

Original languageEnglish
Article number141
JournalJournal of High Energy Physics
Volume2019
Issue number3
DOIs
Publication statusPublished - 1 Mar 2019

Fingerprint

dark matter
quarks
collisions
protons
scalars
particle mass
center of mass
unity
confidence
fermions
luminosity
signatures
deviation
detectors
decay
predictions
energy

Keywords

  • Dark matter
  • Hadron-Hadron scattering (experiments)
  • Top physics

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Cite this

Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at √s=13 TeV. / The CMS collaboration.

In: Journal of High Energy Physics, Vol. 2019, No. 3, 141, 01.03.2019.

Research output: Contribution to journalArticle

@article{0291f179c8fc4c40afe1beb57ebe8bb0,
title = "Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at √s=13 TeV",
abstract = "A search for dark matter produced in association with top quarks in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The data set used corresponds to an integrated luminosity of 35.9 fb −1 recorded with the CMS detector at the LHC. Whereas previous searches for neutral scalar or pseudoscalar mediators considered dark matter production in association with a top quark pair only, this analysis also includes production modes with a single top quark. The results are derived from the combination of multiple selection categories that are defined to target either the single top quark or the top quark pair signature. No significant deviations with respect to the standard model predictions are observed. The results are interpreted in the context of a simplified model in which a scalar or pseudoscalar mediator particle couples to a top quark and subsequently decays into dark matter particles. Scalar and pseudoscalar mediator particles with masses below 290 and 300 GeV, respectively, are excluded at 95{\%} confidence level, assuming a dark matter particle mass of 1 GeV and mediator couplings to fermions and dark matter particles equal to unity.[Figure not available: see fulltext.].",
keywords = "Dark matter, Hadron-Hadron scattering (experiments), Top physics",
author = "{The CMS collaboration} and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and F. Ambrogi and E. Asilar and T. Bergauer and J. Brandstetter and M. Dragicevic and J. Er{\"o} and {Escalante Del Valle}, A. and M. Flechl and R. Fr{\"u}hwirth and Ghete, {V. M.} and J. Hrubec and M. Jeitler and N. Krammer and I. Kr{\"a}tschmer and D. Liko and T. Madlener and I. Mikulec and N. Rad and H. Rohringer and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and D. Spitzbart and W. Waltenberger and J. Wittmann and Wulz, {C. E.} and M. Zarucki and V. Chekhovsky and V. Mossolov and {Suarez Gonzalez}, J. and {De Wolf}, {E. A.} and {Di Croce}, D. and V. Danilov and Kim, {J. S.} and Kim, {J. S.} and Kim, {J. S.} and M. Gavrilenko and A. Zarubin and Y. Ivanov and V. Kim and V. Oreshkin and S. Vavilov and V. Popov and A. Ershov and A. Babaev and S. Baidali and V. Okhotnikov",
year = "2019",
month = "3",
day = "1",
doi = "10.1007/JHEP03(2019)141",
language = "English",
volume = "2019",
journal = "Journal of High Energy Physics",
issn = "1126-6708",
publisher = "Springer Verlag",
number = "3",

}

TY - JOUR

T1 - Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at √s=13 TeV

AU - The CMS collaboration

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Ambrogi, F.

AU - Asilar, E.

AU - Bergauer, T.

AU - Brandstetter, J.

AU - Dragicevic, M.

AU - Erö, J.

AU - Escalante Del Valle, A.

AU - Flechl, M.

AU - Frühwirth, R.

AU - Ghete, V. M.

AU - Hrubec, J.

AU - Jeitler, M.

AU - Krammer, N.

AU - Krätschmer, I.

AU - Liko, D.

AU - Madlener, T.

AU - Mikulec, I.

AU - Rad, N.

AU - Rohringer, H.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Spitzbart, D.

AU - Waltenberger, W.

AU - Wittmann, J.

AU - Wulz, C. E.

AU - Zarucki, M.

AU - Chekhovsky, V.

AU - Mossolov, V.

AU - Suarez Gonzalez, J.

AU - De Wolf, E. A.

AU - Di Croce, D.

AU - Danilov, V.

AU - Kim, J. S.

AU - Kim, J. S.

AU - Kim, J. S.

AU - Gavrilenko, M.

AU - Zarubin, A.

AU - Ivanov, Y.

AU - Kim, V.

AU - Oreshkin, V.

AU - Vavilov, S.

AU - Popov, V.

AU - Ershov, A.

AU - Babaev, A.

AU - Baidali, S.

AU - Okhotnikov, V.

PY - 2019/3/1

Y1 - 2019/3/1

N2 - A search for dark matter produced in association with top quarks in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The data set used corresponds to an integrated luminosity of 35.9 fb −1 recorded with the CMS detector at the LHC. Whereas previous searches for neutral scalar or pseudoscalar mediators considered dark matter production in association with a top quark pair only, this analysis also includes production modes with a single top quark. The results are derived from the combination of multiple selection categories that are defined to target either the single top quark or the top quark pair signature. No significant deviations with respect to the standard model predictions are observed. The results are interpreted in the context of a simplified model in which a scalar or pseudoscalar mediator particle couples to a top quark and subsequently decays into dark matter particles. Scalar and pseudoscalar mediator particles with masses below 290 and 300 GeV, respectively, are excluded at 95% confidence level, assuming a dark matter particle mass of 1 GeV and mediator couplings to fermions and dark matter particles equal to unity.[Figure not available: see fulltext.].

AB - A search for dark matter produced in association with top quarks in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The data set used corresponds to an integrated luminosity of 35.9 fb −1 recorded with the CMS detector at the LHC. Whereas previous searches for neutral scalar or pseudoscalar mediators considered dark matter production in association with a top quark pair only, this analysis also includes production modes with a single top quark. The results are derived from the combination of multiple selection categories that are defined to target either the single top quark or the top quark pair signature. No significant deviations with respect to the standard model predictions are observed. The results are interpreted in the context of a simplified model in which a scalar or pseudoscalar mediator particle couples to a top quark and subsequently decays into dark matter particles. Scalar and pseudoscalar mediator particles with masses below 290 and 300 GeV, respectively, are excluded at 95% confidence level, assuming a dark matter particle mass of 1 GeV and mediator couplings to fermions and dark matter particles equal to unity.[Figure not available: see fulltext.].

KW - Dark matter

KW - Hadron-Hadron scattering (experiments)

KW - Top physics

UR - http://www.scopus.com/inward/record.url?scp=85063645926&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063645926&partnerID=8YFLogxK

U2 - 10.1007/JHEP03(2019)141

DO - 10.1007/JHEP03(2019)141

M3 - Article

VL - 2019

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1126-6708

IS - 3

M1 - 141

ER -