Reduced graphene oxide nanostructures by light: Going beyond the diffraction limit

Raul D. Rodriguez, Ma Bing, Alexey Ruban, Sergey Pavlov, Ammar Al Hamry, Varnika Prakash, Munis Khan, Gennadiy Murastov, Ashutosh Mukherjee, Zoheb Khan, Suhail Shah, Anna Lipovka, Olfa Kanoun, Surinder K. Mehta, Evgeniya Sheremet

Research output: Contribution to journalConference articlepeer-review


Graphene oxide (GO) offers excellent possibilities that are recently demonstrated in many applications ranging from biological sensors to optoelectronic devices. The process of thermal annealing aids in removing the oxygen-containing groups in GO, making GO more graphene-like, or the so-called reduced graphene oxide (rGO). Thermal reduction can also be achieved by intense light. Here, we demonstrate a scalable, inexpensive, and environmentally friendly method to pattern graphene oxide films beyond the diffraction limit of light using a conventional laser. We show that contrary to previous reports, non-linear effects that occur under high intensity conditions of laser irradiation allow the fabrication of highly conductive carbon nanowires with dimensions much smaller than the laser spot size. The potential of this method is illustrated by the fabrication of several devices on flexible and transparent substrates, including hybrid plasmonic/rGO sensors.

Original languageEnglish
Article number012124
JournalJournal of Physics: Conference Series
Publication statusPublished - 1 Jan 2018
Event3rd International Conference on Metamaterials and Nanophotonics, METANANO 2018 - Sochi, Russian Federation
Duration: 17 Sep 201821 Sep 2018

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Reduced graphene oxide nanostructures by light: Going beyond the diffraction limit'. Together they form a unique fingerprint.

Cite this