Radiation of twisted photons from charged particles moving in cholesterics

O. V. Bogdanov, P. O. Kazinski, P. S. Korolev, G. Yu Lazarenko

Research output: Contribution to journalArticlepeer-review

Abstract

The radiation of twisted photons by charged particles traversing a cholesteric plate is studied in the framework of quantum electrodynamics in an anisotropic inhomogeneous dispersive medium. The complete set of solutions to the Maxwell equations in the cholesteric plate is constructed in the paraxial and small anisotropy approximations. The explicit expressions for the average numbers of plane-wave and twisted photons created by a charged point particle crossing the cholesteric plate are derived. The selection rules for the twisted photons radiated at the harmonic n ∈ ℤ are established. In the paraxial regime, the projection of the orbital angular momentum of a radiated twisted photon obeys the selection rule l = ± (2n + 1). In the approximation of a small anisotropy of the permittivity tensor, the selection rule becomes m = ± 2n, where m is the projection of the total angular momentum of a radiated twisted photon. The sign “±” in these selection rules is related to the choice of the forward or reflected waves in the cholesteric and is realized at the different energies of radiated photons. As the examples, the radiation of optical twisted photons by electrons with the Lorentz factors γ = 235 and γ = 500 and by uranium nuclei with γ = 2 are considered. It is shown that charged particles traversing normally a cholesteric plate can be used as a pure source of twisted photons. These results can be employed for elaboration of compact flexible sources of twisted photons, new particle detectors, and for diagnostics of the structure of liquid crystals.

Original languageEnglish
Article number115278
JournalJournal of Molecular Liquids
Volume326
DOIs
Publication statusPublished - 15 Mar 2021

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Spectroscopy
  • Physical and Theoretical Chemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Radiation of twisted photons from charged particles moving in cholesterics'. Together they form a unique fingerprint.

Cite this