Quantifying chaos by various computational methods. Part 2: Vibrations of the Bernoulli-Euler beam subjected to periodic and colored noise

Jan Awrejcewicz, Anton V. Krysko, Nikolay P. Erofeev, Vitalyi Dobriyan, Marina A. Barulina, Vadim A. Krysko

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

In this part of the paper, the theory of nonlinear dynamics of flexible Euler-Bernoulli beams (the kinematic model of the first-order approximation) under transverse harmonic load and colored noise has been proposed. It has been shown that the introduced concept of phase transition allows for further generalization of the problem. The concept has been extended to a so-called noise-induced transition, which is a novel transition type exhibited by nonequilibrium systems embedded in a stochastic fluctuated medium, the properties of which depend on time and are influenced by external noise. Colored noise excitation of a structural system treated as a system with an infinite number of degrees of freedom has been studied.

Original languageEnglish
Article number170
JournalEntropy
Volume20
Issue number3
DOIs
Publication statusPublished - 1 Mar 2018

Keywords

  • Bernoulli-Euler beam
  • Colored noise
  • Geometric nonlinearity
  • Lyapunov exponents
  • Noise induced transitions
  • True chaos
  • Wavelets

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Quantifying chaos by various computational methods. Part 2: Vibrations of the Bernoulli-Euler beam subjected to periodic and colored noise'. Together they form a unique fingerprint.

  • Cite this