Propagation of phonons in nanocrystalline ZrO2: Y 2O3 ceramics

Yu N. Barabanenkov, V. V. Ivanov, S. N. Ivanov, E. I. Salamatov, A. V. Taranov, E. N. Khazanov, O. L. Khasanov

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)


Phonon transfer in yttrium-oxide (Y2O3) stabilized ZrO2 ceramics is studied experimentally in the range of helium temperatures (1.7-3.8 K). A model of the structure of the intergranular layer in the ceramic is considered, which explains the temperature dependence of the phonon diffusion coefficient, makes it possible to determine the intergranular layer parameters (density, velocity of sound, and thickness), and gives an idea about its structure. Scattering of injected phonons from resonance vibrations of nanoceramic grains is discussed.

Original languageEnglish
Pages (from-to)114-120
Number of pages7
JournalJournal of Experimental and Theoretical Physics
Issue number1
Publication statusPublished - 20 Mar 2006

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Propagation of phonons in nanocrystalline ZrO<sub>2</sub>: Y <sub>2</sub>O<sub>3</sub> ceramics'. Together they form a unique fingerprint.

Cite this