Promising components of waste-derived slurry fuels

Research output: Contribution to journalArticlepeer-review


The paper presents the results of experimental studies of energy (calorific value, ignition delay times and threshold ignition temperatures, duration and temperature of combustion) and environmental (CO2, NOx and SOx emission) characteristics of fuel slurries based on pulverized wood (sawdust), agricultural (straw), and household (cardboard) waste. Wastewater from a sewage treatment plant served as a liquid medium for fuels. Petrochemical waste and heavy oil were additives to slurries. The focus is on obtaining the maximum efficiency ratio of slurry fuel, calculated taking into account environmental, cost, energy and fire safety parameters. All slurry fuels were compared with typical coal-water slurry for all the parameters studied. A comparison was also made between slurries and traditional boiler fuels (coal, fuel oil). The relative efficiency indicator for waste-based mixtures was varied in the range of 0.93–10.92. The lowest ignition costs can be expected when burning a mixture based on straw, cardboard and oil additive (ignition temperature is about 330 °C). The volumes of potential energy generated with the active involvement of industrial waste instead of traditional coal and oil combustion are forecasted. It is predicted that with the widespread use of waste-derived slurries, about 43% of coal and oil can be saved.

Original languageEnglish
Pages (from-to)2044-2054
Number of pages11
JournalJournal of the Energy Institute
Issue number5
Publication statusPublished - Oct 2020


  • Combustion
  • Emission
  • Fuel efficiency
  • Ignition
  • Industrial waste
  • Slurry fuels

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Promising components of waste-derived slurry fuels'. Together they form a unique fingerprint.

Cite this