Abstract
Search and synthesis of glucose derivatives for nuclear medicine is of great current interest. Being a promising analogue of glucose, D-glucosamine iodine labeled glucose derivatives can be applied in rheumatoid arthritis radionuclide diagnostics and therapy as a radiopharmaceutical. The purpose of the study. Synthesis of a new iodine labeled D-glucosamine derivative; development of the iodine-123 labeling method and the obtained glucose derivative biostudy. Materials and methods. Synthesis of 2-N-(6-iodohexanoyl)-D-glucosamine was carried out through established techniques in organic chemistry. Infrared spectroscopy and nuclear magnetic resonance spectroscopy were used to establish the test compound structure. Isotope change between iodine-127 and iodine-123 of glucosamine derivative was conducted using the heating of mix of the compound and Na123I in acetone. The radio-TLC method was applied to estimate the radiochemical purity of 2-N- (6-iod-123-hexanoyl) -D-glucosamine. The safe application and test of drug pharmacokinetic parameters study was performed on intact Wistar male rats. Results. An original 2-N-(6-iodohexanoyl)-D-glucosamine synthesis method was proposed. According to the method, an intermediate synthesis succimide-1-yl 6-iodohexanoate was obtained by the cyclohexanone oxidative cleavage reaction. The radiochemical purity of 2-N-(6-iodo-123-hexanoyl)-D-glucosamine was more than 97%. Conclusion. 2-N-(6-iodohexanoyl)-D-glucosamine was synthesized and iodine-123 labeled. When investigating the proposed radiopharmaceutical safety and pharmacokinetics, it was shown the drug lacks acute toxicity through intravenous injection and is excreted renally by glomerular filtration.
Original language | English |
---|---|
Pages (from-to) | 102-111 |
Number of pages | 10 |
Journal | Bulletin of Siberian Medicine |
Volume | 17 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2018 |
Keywords
- 2-N-(6-iodohexanoyl)-D-glucosamine
- Cyclohexanone
- D-glucosamine
- Iodine-123
- RFP
ASJC Scopus subject areas
- Molecular Medicine