Powerflow calculations in powersystems considering traction load

V. V. Shestakova, I. M. Kats, A. V. Darkhanova

Research output: Contribution to journalConference articlepeer-review

Abstract

Nowadays, the negative impact of traction load on power system operation poses a serious problem that may lead to false tripping or even failures of relay protection devices and reduce the quality of electrical energy. This situation is typical for the Zabaikal power system, in which in some areas the share of electricity consumption by railway reaches 70% of total consumption. A computing tool, that would allow simultaneous analysis of the modes, both in the utility's grid and in the traction network, do not exist. The inability to carry out such analysis often leads to inconsistency in the actions of control centers and railway transport authorities, especially when maintenance planning. Mathematic modeling in such software systems as “Mustang”, “RastrWin3”, “MathCAD”, “Matlab/Simulink”, “PSCAD”, “Kortes”. The developed model represents Zabaikal power system and contain detailed railway between substation Razmahnino - Shilka, Chita - Mogocha. Negative-sequence voltage unbalance factors were calculated for the case of train movement between substation Razmahnino and substation Shilka. Also, the necessity of back-up relays tripping values correction is stated. It was shown that for the powerflow calculations taking into account the traction load, it is rational to use a complex mathematical model, which uses compatible software systems with the ability of quick and easy data exchange.

Original languageEnglish
Article number012004
JournalIOP Conference Series: Materials Science and Engineering
Volume1019
Issue number1
DOIs
Publication statusPublished - 20 Jan 2021
Event14th International Forum on Strategic Technology, IFOST 2019 - Tomsk, Russian Federation
Duration: 14 Oct 201917 Oct 2019

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)

Fingerprint Dive into the research topics of 'Powerflow calculations in powersystems considering traction load'. Together they form a unique fingerprint.

Cite this