TY - GEN
T1 - Poly(lactic acid) based polymer composites for biomedicine
AU - Lebedev, Sergey M.
AU - Khlusov, Igor A.
AU - Chistokhin, Dmitry M.
N1 - Publisher Copyright:
© 2020 American Institute of Physics Inc.. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12/14
Y1 - 2020/12/14
N2 - Main properties of biodegradable polymer composites on the base of poly(lactic acid) (PLA) filled with hydroxyapatite (HA) were studied by different methods such as dielectric spectroscopy in frequency domain, optical microscopy, wide-angle X-ray diffraction and tensile tests. All composites were fabricated by melt compounding. It has been found that values of real part of the complex permittivity of PLA-HA composites are increased by 15-30% compared to that for neat PLA, while loss factor tanG does not exceed 0.02. The degree of crystallinity of PLA-HA composites is increased by 3.2 and 6.15 times with filling by HA from 25 to 50 wt % respectively compared to that for neat PLA. All studied mechanical parameters, except for Young's modulus, tend to decrease with increasing filler content due to an increase in the stiffness of composites.
AB - Main properties of biodegradable polymer composites on the base of poly(lactic acid) (PLA) filled with hydroxyapatite (HA) were studied by different methods such as dielectric spectroscopy in frequency domain, optical microscopy, wide-angle X-ray diffraction and tensile tests. All composites were fabricated by melt compounding. It has been found that values of real part of the complex permittivity of PLA-HA composites are increased by 15-30% compared to that for neat PLA, while loss factor tanG does not exceed 0.02. The degree of crystallinity of PLA-HA composites is increased by 3.2 and 6.15 times with filling by HA from 25 to 50 wt % respectively compared to that for neat PLA. All studied mechanical parameters, except for Young's modulus, tend to decrease with increasing filler content due to an increase in the stiffness of composites.
UR - http://www.scopus.com/inward/record.url?scp=85097999630&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097999630&partnerID=8YFLogxK
U2 - 10.1063/5.0034060
DO - 10.1063/5.0034060
M3 - Conference contribution
AN - SCOPUS:85097999630
T3 - AIP Conference Proceedings
BT - Proceedings of the International Conference on Physical Mesomechanics. Materials with Multilevel Hierarchical Structure and Intelligent Manufacturing Technology
A2 - Panin, Victor E.
A2 - Fomin, Vasily M.
PB - American Institute of Physics Inc.
T2 - International Conference on Physical Mesomechanics. Materials with Multilevel Hierarchical Structure and Intelligent Manufacturing Technology 2020
Y2 - 5 October 2020 through 9 October 2020
ER -