Physical foundations of nonlinear fracture mechanics

V. E. Egorushkin, V. E. Panin

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


A survey of the authors' papers dealing with the physical foundations of multilevel nonlinear fracture mechanics is presented. The gauge theory of defects is used to obtain wave equations that predict the possibility of a crack development as a nonlinear wave process. Under viscous fracture conditions, nonlinear fracture waves disperse forming local mesovortices in the form of dynamic rotations. Experimental data confirming the wave theory predictions are given. The fracture development is related to the structure-phase breakup of a deformable crystal in the regions of its strong curvature.

Original languageEnglish
Pages (from-to)525-536
Number of pages12
JournalMechanics of Solids
Issue number5
Publication statusPublished - 20 Dec 2013


  • dynamic rotation
  • fracture
  • gauge theory
  • mechanics
  • nonlinearwave
  • physics

ASJC Scopus subject areas

  • Mechanics of Materials
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Physical foundations of nonlinear fracture mechanics'. Together they form a unique fingerprint.

Cite this