Particularities of spatial kinetics of hybrid thorium reactor installation containing the long neutron source based on magnetic trap

I. V. Shamanin, S. V. Bedenko, I. O. Lutsik, S. D. Polozkov, A. V. Arzhannikov

Research output: Contribution to journalConference articlepeer-review

Abstract

In this work, we study the features of the spatial kinetics of installation as a hybrid thorium reactor with an elongated plasma neutron source based on a magnetic trap. The active zone of the installation under study consists of an assembly of hexagonal fuel blocks of a unified design and a long solenoid with a high-temperature plasma column passing through the axial region of the core. Combining engineering expertise in creating nuclear reactors with a physics-technical potential for obtaining high-temperature plasma in a long magnetic trap we ensure the solution of the multidisciplinary problem posed. These studies are of undoubted practical interest, since they are necessary to substantiate the safety of operation of such hybrid systems. The research results will allow optimizing the active zone of the hybrid system with leveling the resulting offset radial and axial energy release distributions. Results of our study will be the basis for the development of new and improvement of existing methods of criticality control in related systems such as “pulsed neutron source - subcritical fuel assembly .

Original languageEnglish
Article number012037
JournalIOP Conference Series: Materials Science and Engineering
Volume1019
Issue number1
DOIs
Publication statusPublished - 20 Jan 2021
Event14th International Forum on Strategic Technology, IFOST 2019 - Tomsk, Russian Federation
Duration: 14 Oct 201917 Oct 2019

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)

Fingerprint Dive into the research topics of 'Particularities of spatial kinetics of hybrid thorium reactor installation containing the long neutron source based on magnetic trap'. Together they form a unique fingerprint.

Cite this