TY - JOUR

T1 - Parameter identification of induction motors

AU - Cuevas, Erik

AU - Osuna, Valentín

AU - Oliva, Diego

PY - 2017

Y1 - 2017

N2 - The efficient use of electrical energy is a topic that has attracted attention for its environmental consequences. On the other hand, induction motors represent the main component in most of the industries. They consume the highest energy percentages in industrial facilities. This energy consumption depends on the operation conditions of the induction motor imposed by its internal parameters. Since the internal parameters of an induction motor are not directly measurable, an identification process must be conducted to obtain them. In the identification process, the parameter estimation is transformed into a multidimensional optimization problem where the internal parameters of the induction motor are considered as decision variables. Under this approach, the complexity of the optimization problem tends to produce multimodal error surfaces for which their cost functions are significantly difficult to minimize. Several algorithms based on evolutionary computation principles have been successfully applied to identify the optimal parameters of induction motors. However, most of them maintain an important limitation, they frequently obtain sub-optimal solutions as a result of an improper equilibrium between exploitation and exploration in their search strategies. This chapter presents an algorithm for the optimal parameter identification of induction motors. To determine the parameters, the presented method uses a recent evolutionary method called the Gravitational Search Algorithm (GSA). Different to the most of existent evolutionary algorithms, GSA presents a better performance in multimodal problems, avoiding critical flaws such as the premature convergence to sub-optimal solutions. Numerical simulations have been conducted on several models to show the effectiveness of the presented scheme.

AB - The efficient use of electrical energy is a topic that has attracted attention for its environmental consequences. On the other hand, induction motors represent the main component in most of the industries. They consume the highest energy percentages in industrial facilities. This energy consumption depends on the operation conditions of the induction motor imposed by its internal parameters. Since the internal parameters of an induction motor are not directly measurable, an identification process must be conducted to obtain them. In the identification process, the parameter estimation is transformed into a multidimensional optimization problem where the internal parameters of the induction motor are considered as decision variables. Under this approach, the complexity of the optimization problem tends to produce multimodal error surfaces for which their cost functions are significantly difficult to minimize. Several algorithms based on evolutionary computation principles have been successfully applied to identify the optimal parameters of induction motors. However, most of them maintain an important limitation, they frequently obtain sub-optimal solutions as a result of an improper equilibrium between exploitation and exploration in their search strategies. This chapter presents an algorithm for the optimal parameter identification of induction motors. To determine the parameters, the presented method uses a recent evolutionary method called the Gravitational Search Algorithm (GSA). Different to the most of existent evolutionary algorithms, GSA presents a better performance in multimodal problems, avoiding critical flaws such as the premature convergence to sub-optimal solutions. Numerical simulations have been conducted on several models to show the effectiveness of the presented scheme.

UR - http://www.scopus.com/inward/record.url?scp=85008311804&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85008311804&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-51109-2_7

DO - 10.1007/978-3-319-51109-2_7

M3 - Article

AN - SCOPUS:85008311804

VL - 686

SP - 139

EP - 154

JO - Studies in Computational Intelligence

JF - Studies in Computational Intelligence

SN - 1860-949X

ER -