### Abstract

Using quasiclassical kinetic theory, nonlinear phenomena under the formation of space-charge polarization in crystals with hydrogen bonds (HBC) are investigated. From the solution of the nonlinear system of Fokker-Planck and Poisson equations with blocking electrodes, it is established that for the mathematical description of the relaxation polarization in HBCs in weak fields (100-1000 kV/m) and at high temperatures (T> 350 K), it is sufficient to use a linear approximation of perturbation theory. Theoretically, it was found that at the first odd frequency of the alternating field, nonlinear effects caused by the interaction of relaxation modes of various frequency orders start to appear. The diffusion and mobility coefficients are calculated taking into account both mechanisms of the protons transitions (thermally activated and tunneling transitions) through a parabolic potential barrier. A recurrence expression is constructed for calculating complex amplitudes of relaxation modes generated at an arbitrary frequency (multiple to the fundamental frequency) of the alternating field in an arbitrary approximation of perturbation theory. The proposed scheme for solving the kinetic equation can be applied to other crystals with ionic conductivity similar to HBCs in the type and properties of the crystal lattice.

Original language | English |
---|---|

Pages (from-to) | 757-769 |

Number of pages | 13 |

Journal | Russian Physics Journal |

Volume | 61 |

Issue number | 4 |

DOIs | |

Publication status | Published - 1 Aug 2018 |

### Fingerprint

### Keywords

- crystals with hydrogen bonds
- nonlinear system of Fokker-Planck and Poisson equations
- polarization frequency harmonics
- proton relaxation and conductivity
- proton semiconductors and dielectrics
- relaxation modes

### ASJC Scopus subject areas

- Physics and Astronomy(all)

### Cite this

*Russian Physics Journal*,

*61*(4), 757-769. https://doi.org/10.1007/s11182-018-1457-8

**Nonlinear Polarization Effects in Dielectrics with Hydrogen Bonds.** / Kalytka, V. A.; Korovkin, M. V.; Mekhtiyev, A. D.; Yurchenko, A. V.

Research output: Contribution to journal › Article

*Russian Physics Journal*, vol. 61, no. 4, pp. 757-769. https://doi.org/10.1007/s11182-018-1457-8

}

TY - JOUR

T1 - Nonlinear Polarization Effects in Dielectrics with Hydrogen Bonds

AU - Kalytka, V. A.

AU - Korovkin, M. V.

AU - Mekhtiyev, A. D.

AU - Yurchenko, A. V.

PY - 2018/8/1

Y1 - 2018/8/1

N2 - Using quasiclassical kinetic theory, nonlinear phenomena under the formation of space-charge polarization in crystals with hydrogen bonds (HBC) are investigated. From the solution of the nonlinear system of Fokker-Planck and Poisson equations with blocking electrodes, it is established that for the mathematical description of the relaxation polarization in HBCs in weak fields (100-1000 kV/m) and at high temperatures (T> 350 K), it is sufficient to use a linear approximation of perturbation theory. Theoretically, it was found that at the first odd frequency of the alternating field, nonlinear effects caused by the interaction of relaxation modes of various frequency orders start to appear. The diffusion and mobility coefficients are calculated taking into account both mechanisms of the protons transitions (thermally activated and tunneling transitions) through a parabolic potential barrier. A recurrence expression is constructed for calculating complex amplitudes of relaxation modes generated at an arbitrary frequency (multiple to the fundamental frequency) of the alternating field in an arbitrary approximation of perturbation theory. The proposed scheme for solving the kinetic equation can be applied to other crystals with ionic conductivity similar to HBCs in the type and properties of the crystal lattice.

AB - Using quasiclassical kinetic theory, nonlinear phenomena under the formation of space-charge polarization in crystals with hydrogen bonds (HBC) are investigated. From the solution of the nonlinear system of Fokker-Planck and Poisson equations with blocking electrodes, it is established that for the mathematical description of the relaxation polarization in HBCs in weak fields (100-1000 kV/m) and at high temperatures (T> 350 K), it is sufficient to use a linear approximation of perturbation theory. Theoretically, it was found that at the first odd frequency of the alternating field, nonlinear effects caused by the interaction of relaxation modes of various frequency orders start to appear. The diffusion and mobility coefficients are calculated taking into account both mechanisms of the protons transitions (thermally activated and tunneling transitions) through a parabolic potential barrier. A recurrence expression is constructed for calculating complex amplitudes of relaxation modes generated at an arbitrary frequency (multiple to the fundamental frequency) of the alternating field in an arbitrary approximation of perturbation theory. The proposed scheme for solving the kinetic equation can be applied to other crystals with ionic conductivity similar to HBCs in the type and properties of the crystal lattice.

KW - crystals with hydrogen bonds

KW - nonlinear system of Fokker-Planck and Poisson equations

KW - polarization frequency harmonics

KW - proton relaxation and conductivity

KW - proton semiconductors and dielectrics

KW - relaxation modes

UR - http://www.scopus.com/inward/record.url?scp=85052127292&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85052127292&partnerID=8YFLogxK

U2 - 10.1007/s11182-018-1457-8

DO - 10.1007/s11182-018-1457-8

M3 - Article

AN - SCOPUS:85052127292

VL - 61

SP - 757

EP - 769

JO - Russian Physics Journal

JF - Russian Physics Journal

SN - 1064-8887

IS - 4

ER -