Nondestructive testing of composite T-Joints by TNDT and other methods

Vladimir Vavilov, Arsenii Chulkov, Stanislav Dubinskii, Douglas Burleigh, Victor Shpilnoi, Daria Derusova, Vadim Zhvyrblia

Research output: Contribution to journalArticlepeer-review


Detecting delaminations in the stringer foot areas of “T -joints” made of carbon fiber reinforced polymer (CFRP) composite is a challenging task for standard nondestructive testing (NDT) techniques. In this study, several methods of thermal NDT (TNDT) have been used to inspect eight CFRP T-Joint specimens with polyolefin film implants which represent subsurface defects. Both one- and two-sided TNDT procedures were used. Thermal modeling was performed to predict the results of TNDT tests. The potential of laser vibrometry was also investigated, and UT (ultrasonic) phased array C-scan was used for verification of test results. Two-sided TNDT was able to detect simulated defects throughout the entire thickness of the test material. Thermal images of defect-free T-Joints clearly establish baseline thermal patterns of “good” stringers, and subsurface defects may create an identifiable distortion to the baseline patterns. The ability of one-sided TNDT to detect defects depends strongly on their depth and size. Ultrasonic (“sonic”) infrared thermography was not successful in detecting the implants, due to the formation of standing waves and complicated thermal patterns observed on the stringers. And laser vibrometry has proven to be ineffective in the detection of the implants. Phased array ultrasonic C-scan testing has also been successful in detecting polymeric implants located outside the ultrasonic “dead zone” but the best sensitivity of UT is achieved in immersion techniques, with water between the ultrasonic transducer and a part to be tested. In all cases, the use of advanced data processing techniques has been indispensable to provide reasonable test results.

Original languageEnglish
Article number107012
JournalPolymer Testing
Publication statusPublished - Feb 2021


  • Composite
  • Defect
  • IR thermography
  • Laser vibrometry
  • Nondestructive testing (NDT)
  • T-joint
  • Thermal NDT
  • Ultrasonic thermography

ASJC Scopus subject areas

  • Organic Chemistry
  • Polymers and Plastics

Fingerprint Dive into the research topics of 'Nondestructive testing of composite T-Joints by TNDT and other methods'. Together they form a unique fingerprint.

Cite this