Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation

Research output: Contribution to journalArticle

Abstract

Dissociation of natural and artificial methane hydrate at combustion was studied experimentally. Thermal imaging and Particle Tracking Velocimetry (PTV) methods were used to analyze the temperature field and gas velocity. The laminar air flow rate varied from 0 to 1.8 m/s. Previously, when modeling the combustion of gas hydrate, a simplified model for a standard laminar velocity profile had been considered. Expectedly, in the combustion region (in the vicinity of the wall) the gas flow velocity was much lower than that at the outer surface of the boundary layer, and calculations showed the presence of the stoichiometric ratio line. The presence of this line in the area of combustion was thought to result in high flame spread speed. The use of the Particle Tracking Velocimetry method and the experimental values of the methane injection rate have led to an unexpected result. High air velocities (maximum of 3–5 m/s) due to free convection have been found in the combustion region. At that in the combustion region, there is a significant excess of oxidant (oxygen) and the mole fraction of CH4 is 10–30 times lower than necessary for the maximum reaction rate. It is shown that high combustion rates (high flame spread speed) may be associated with extremely inhomogeneous dissociation inside the powder and inhomogeneous rate of methane injection over the layer surface. At combustion, “mushroom-like" pulsating flame and methane “bubbles” are formed. The frequency of pulsations increases with the growth of external flow rate. The influence of the initial concentration of methane in natural hydrate on its combustion has been considered. The studies prove that the description of the combustion process must take into account the free convection and heterogeneity of dissociation of methane hydrate in the powder volume.

Original languageEnglish
Pages (from-to)589-602
Number of pages14
JournalEnergy
Volume181
DOIs
Publication statusPublished - 15 Aug 2019
Externally publishedYes

Fingerprint

Hydrates
Methane
Natural convection
Velocity measurement
Flow rate
Powders
Gas hydrates
Infrared imaging
Air
Oxidants
Flow velocity
Reaction rates
Flow of gases
Boundary layers
Temperature distribution
Oxygen

Keywords

  • Combustion
  • Hydrate dissociation
  • Methane gas hydrate

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction
  • Pollution
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Cite this

Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation. / Misyura, S. Y.

In: Energy, Vol. 181, 15.08.2019, p. 589-602.

Research output: Contribution to journalArticle

@article{6f05d626973e49a496024a1dce2096e8,
title = "Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation",
abstract = "Dissociation of natural and artificial methane hydrate at combustion was studied experimentally. Thermal imaging and Particle Tracking Velocimetry (PTV) methods were used to analyze the temperature field and gas velocity. The laminar air flow rate varied from 0 to 1.8 m/s. Previously, when modeling the combustion of gas hydrate, a simplified model for a standard laminar velocity profile had been considered. Expectedly, in the combustion region (in the vicinity of the wall) the gas flow velocity was much lower than that at the outer surface of the boundary layer, and calculations showed the presence of the stoichiometric ratio line. The presence of this line in the area of combustion was thought to result in high flame spread speed. The use of the Particle Tracking Velocimetry method and the experimental values of the methane injection rate have led to an unexpected result. High air velocities (maximum of 3–5 m/s) due to free convection have been found in the combustion region. At that in the combustion region, there is a significant excess of oxidant (oxygen) and the mole fraction of CH4 is 10–30 times lower than necessary for the maximum reaction rate. It is shown that high combustion rates (high flame spread speed) may be associated with extremely inhomogeneous dissociation inside the powder and inhomogeneous rate of methane injection over the layer surface. At combustion, “mushroom-like{"} pulsating flame and methane “bubbles” are formed. The frequency of pulsations increases with the growth of external flow rate. The influence of the initial concentration of methane in natural hydrate on its combustion has been considered. The studies prove that the description of the combustion process must take into account the free convection and heterogeneity of dissociation of methane hydrate in the powder volume.",
keywords = "Combustion, Hydrate dissociation, Methane gas hydrate",
author = "Misyura, {S. Y.}",
year = "2019",
month = "8",
day = "15",
doi = "10.1016/j.energy.2019.05.177",
language = "English",
volume = "181",
pages = "589--602",
journal = "Energy",
issn = "0360-5442",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation

AU - Misyura, S. Y.

PY - 2019/8/15

Y1 - 2019/8/15

N2 - Dissociation of natural and artificial methane hydrate at combustion was studied experimentally. Thermal imaging and Particle Tracking Velocimetry (PTV) methods were used to analyze the temperature field and gas velocity. The laminar air flow rate varied from 0 to 1.8 m/s. Previously, when modeling the combustion of gas hydrate, a simplified model for a standard laminar velocity profile had been considered. Expectedly, in the combustion region (in the vicinity of the wall) the gas flow velocity was much lower than that at the outer surface of the boundary layer, and calculations showed the presence of the stoichiometric ratio line. The presence of this line in the area of combustion was thought to result in high flame spread speed. The use of the Particle Tracking Velocimetry method and the experimental values of the methane injection rate have led to an unexpected result. High air velocities (maximum of 3–5 m/s) due to free convection have been found in the combustion region. At that in the combustion region, there is a significant excess of oxidant (oxygen) and the mole fraction of CH4 is 10–30 times lower than necessary for the maximum reaction rate. It is shown that high combustion rates (high flame spread speed) may be associated with extremely inhomogeneous dissociation inside the powder and inhomogeneous rate of methane injection over the layer surface. At combustion, “mushroom-like" pulsating flame and methane “bubbles” are formed. The frequency of pulsations increases with the growth of external flow rate. The influence of the initial concentration of methane in natural hydrate on its combustion has been considered. The studies prove that the description of the combustion process must take into account the free convection and heterogeneity of dissociation of methane hydrate in the powder volume.

AB - Dissociation of natural and artificial methane hydrate at combustion was studied experimentally. Thermal imaging and Particle Tracking Velocimetry (PTV) methods were used to analyze the temperature field and gas velocity. The laminar air flow rate varied from 0 to 1.8 m/s. Previously, when modeling the combustion of gas hydrate, a simplified model for a standard laminar velocity profile had been considered. Expectedly, in the combustion region (in the vicinity of the wall) the gas flow velocity was much lower than that at the outer surface of the boundary layer, and calculations showed the presence of the stoichiometric ratio line. The presence of this line in the area of combustion was thought to result in high flame spread speed. The use of the Particle Tracking Velocimetry method and the experimental values of the methane injection rate have led to an unexpected result. High air velocities (maximum of 3–5 m/s) due to free convection have been found in the combustion region. At that in the combustion region, there is a significant excess of oxidant (oxygen) and the mole fraction of CH4 is 10–30 times lower than necessary for the maximum reaction rate. It is shown that high combustion rates (high flame spread speed) may be associated with extremely inhomogeneous dissociation inside the powder and inhomogeneous rate of methane injection over the layer surface. At combustion, “mushroom-like" pulsating flame and methane “bubbles” are formed. The frequency of pulsations increases with the growth of external flow rate. The influence of the initial concentration of methane in natural hydrate on its combustion has been considered. The studies prove that the description of the combustion process must take into account the free convection and heterogeneity of dissociation of methane hydrate in the powder volume.

KW - Combustion

KW - Hydrate dissociation

KW - Methane gas hydrate

UR - http://www.scopus.com/inward/record.url?scp=85067078593&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067078593&partnerID=8YFLogxK

U2 - 10.1016/j.energy.2019.05.177

DO - 10.1016/j.energy.2019.05.177

M3 - Article

VL - 181

SP - 589

EP - 602

JO - Energy

JF - Energy

SN - 0360-5442

ER -