Abstract
Sensitivity and versatility are characteristics that make a sensor device attractive for wide-spread applications in everyday life. Surface-enhanced Raman spectroscopy (SERS) is capable of providing the highest sensitivity, that of single-molecule detection, and excellent specificity due to its fingerprinting capability. However, conventional SERS substrates must be optimized to operate for a particular excitation wavelength. Here in this work, we achieve for the first time multiwavelength amplification with a hybrid plasmonic/photonic heterostructure integrating a gradient photonic crystal and an Ag nanotriangle array. We demonstrate the detection of ultrathin molecular layers showing a signal amplification for the typical laser wavelengths used in Raman spectroscopy detection. By combining photonics and plasmonics in a single silicon chip, we expand multiwavelength- and spatially-selective ultra-sensitive detection to a wide range of applications from biomedicine to safety.
Original language | English |
---|---|
Article number | 127837 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 311 |
DOIs | |
Publication status | Published - 15 May 2020 |
Keywords
- Optical sensor
- Photonic crystal
- Photonics
- Surface-enhanced Raman spectroscopy
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry