MPQ-cytometry

A magnetism-based method for quantification of nanoparticle-cell interactions

V. O. Shipunova, M. P. Nikitin, P. I. Nikitin, S. M. Deyev

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.

Original languageEnglish
Pages (from-to)12764-12772
Number of pages9
JournalNanoscale
Volume8
Issue number25
DOIs
Publication statusPublished - 7 Jul 2016
Externally publishedYes

Fingerprint

Magnetism
Nanoparticles
Cells
Iron oxides
Nanobiotechnology
Cytology
Molecular biology
Surface Antigens
Antigens
Labels
Assays
Personnel
Tissue

ASJC Scopus subject areas

  • Materials Science(all)

Cite this

MPQ-cytometry : A magnetism-based method for quantification of nanoparticle-cell interactions. / Shipunova, V. O.; Nikitin, M. P.; Nikitin, P. I.; Deyev, S. M.

In: Nanoscale, Vol. 8, No. 25, 07.07.2016, p. 12764-12772.

Research output: Contribution to journalArticle

Shipunova, V. O. ; Nikitin, M. P. ; Nikitin, P. I. ; Deyev, S. M. / MPQ-cytometry : A magnetism-based method for quantification of nanoparticle-cell interactions. In: Nanoscale. 2016 ; Vol. 8, No. 25. pp. 12764-12772.
@article{76029aa80a174351b421a4a0f91ed6db,
title = "MPQ-cytometry: A magnetism-based method for quantification of nanoparticle-cell interactions",
abstract = "Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.",
author = "Shipunova, {V. O.} and Nikitin, {M. P.} and Nikitin, {P. I.} and Deyev, {S. M.}",
year = "2016",
month = "7",
day = "7",
doi = "10.1039/c6nr03507h",
language = "English",
volume = "8",
pages = "12764--12772",
journal = "Nanoscale",
issn = "2040-3364",
publisher = "Royal Society of Chemistry",
number = "25",

}

TY - JOUR

T1 - MPQ-cytometry

T2 - A magnetism-based method for quantification of nanoparticle-cell interactions

AU - Shipunova, V. O.

AU - Nikitin, M. P.

AU - Nikitin, P. I.

AU - Deyev, S. M.

PY - 2016/7/7

Y1 - 2016/7/7

N2 - Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.

AB - Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.

UR - http://www.scopus.com/inward/record.url?scp=84976416342&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84976416342&partnerID=8YFLogxK

U2 - 10.1039/c6nr03507h

DO - 10.1039/c6nr03507h

M3 - Article

VL - 8

SP - 12764

EP - 12772

JO - Nanoscale

JF - Nanoscale

SN - 2040-3364

IS - 25

ER -