Movement and evaporation of water droplets under conditions typical for heat-exchange chambers of contact water heaters

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


The macroscopic regularities and integrated characteristics of the motion and evaporation of sprayed water droplets in the field of high-temperature (1100 K) combustion products under the conditions typical for water heaters of contact type (economizers) were studied using a cross-correlation complex working on the basis of panoramic optical methods (particle image velocimetry, particle tracking velocimetry, shadow photography) and high-speed (105 fps) Phantom video cameras. High-speed video recording devices with specialized software were used for continuously monitoring the motion and evaporation of droplets. Titanium dioxide nanopowder tracer particles were introduced to determine the rate of high-temperature gases. The characteristic distances covered by water droplets before their full retardation in the counter-flow of high-temperature combustion products were determined. The integrated dependences were obtained, and the main characteristics of evaporation were determined, which allow one to predict the intensity of the phase transformations of droplets (with sizes of 0.05–0.5 mm) and the distances covered by them before they completely turn in the opposite direction under the conditions corresponding to the heat-exchange chambers of contact water heaters: the vapor-droplet rate 1–5 m/s, gas flow rate 0.5–2 m/s, and gas temperature ~1100 K. Approximating expressions were derived to predict the characteristics of the processes. The performance of the economizers under study can be significantly increased by using the obtained experimental dependences, the corresponding approximating expressions, and the resulting conclusions. Conditions were determined under which the influence of phase transformations on retardation exceeds the contribution of the counter-motion and active retardation and evaporation of water droplets occur in the heat-exchange chambers of contact water heaters of typical sizes.

Original languageEnglish
Pages (from-to)666-673
Number of pages8
JournalThermal Engineering (English translation of Teploenergetika)
Issue number9
Publication statusPublished - 1 Sep 2016


  • contact water heaters
  • evaporation
  • heat exchange chamber
  • high-temperature gases
  • water droplets

ASJC Scopus subject areas

  • Nuclear Energy and Engineering
  • Energy Engineering and Power Technology

Fingerprint Dive into the research topics of 'Movement and evaporation of water droplets under conditions typical for heat-exchange chambers of contact water heaters'. Together they form a unique fingerprint.

Cite this