Abstract
This paper focuses on the modeling of a spacecraft solar arrays deployment process in ground tests of mechanical devices on the active gravity compensation systems. The ground tests are carried out on the test workbenches. Such workbenches provide a gravity compensation of the solar arrays in the deployment process in order to simulate the space weightlessness conditions. The passive gravity compensation systems with cable suspensions for moving parts of the solar array are the most widespread at nowadays. The gravity compensation of the passive workbenches for the large size and heavy solar arrays could differ significantly from the space weightlessness conditions because of the 'added mass effect'. For this reason, an active gravity compensation workbench was created by the ISS-Reshetnev Company order [1]. In the active gravity compensation system, the trolleys are equipped with tracking systems, which hold the suspension cable on vertical position with high accuracy during the solar array deployment and the tensile (compensation) forces in the cables supported by automatic control systems at desired levels. The modeling of dynamics of the solar arrays transformable elements and the active gravity compensation system mobile devices was implemented in Matlab Simulink with creating mechanical component models at SolidWorks and other.
Original language | English |
---|---|
Title of host publication | RPC 2018 - Proceedings of the 3rd Russian-Pacific Conference on Computer Technology and Applications |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781538675311 |
DOIs | |
Publication status | Published - 4 Oct 2018 |
Event | 3rd Russian-Pacific Conference on Computer Technology and Applications, RPC 2018 - Vladivostok, Russian Federation Duration: 18 Aug 2018 → 25 Aug 2018 |
Conference
Conference | 3rd Russian-Pacific Conference on Computer Technology and Applications, RPC 2018 |
---|---|
Country | Russian Federation |
City | Vladivostok |
Period | 18.8.18 → 25.8.18 |
Keywords
- deployable solar arrays
- gravity compensation system
- ground test
- weightlessness environment
- zero-gravity
ASJC Scopus subject areas
- Computer Networks and Communications
- Computer Science (miscellaneous)
- Computer Science Applications
- Software
- Control and Optimization
- Modelling and Simulation