Modeling and characterizing impact damage in carbon fiber composites by thermal/infrared non-destructive testing

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Thermal/infrared non-destructive testing (T/I NDT) is a particular application of IR thermography. T/I NDT is typically classified for passive and active, as well as for steady-state (stationary) and transient (non-stationary, or dynamic). Active T/I NDT can be classified by: (1) the type of thermal stimulation, (2) the arrangement of a sample and a thermal stimulation source, and (3) the size and shape of stimulated area. T/I NDT has proven to be a convenient technique for the detection of impact damage in composite materials due to the following: (1) graphite-based composites are similar to a blackbody by absorption/radiation properties in the infrared (IR) wavelength band, (2) their thermal conductivity is lower than that of metals but higher than of many non-metals thus ensuring reasonable temperature signals at convenient observation times, (3) impact damage leads to thin but laterally-extended air-filled defects which produce considerable thermal resistance to the in-depth heat flux, and (4) T/I NDT is a fast, remote and illustrative technique which, unlike ultrasonic inspection, does not require immersing a sample into water. This paper describes some approaches to thermal detection and characterization of impact damage in carbon fiber reinforced plastic (CFRP) of whose inspection is an important issue in several industrial areas, first of all, in aero space where subsurface defects might lead to catastrophic consequences. Realistic solutions of T/I NDT theoretical problems can be obtained by using 3D numerical models of heat conduction. Direct solutions allow better understanding of heat propagation in defect areas while inverse solutions ensure the evaluation of defect parameters, such as defect depth, size and thickness. Several characterization algorithms are available, with a one-sided T/I NDT procedure being better suited for the characterization of defect depth, while defect thickness is best evaluated in a two-sided procedure. In the case of CFRP composites, the defect characterization approaches are well developed, including the technique of dynamic thermal tomography, which enables a considerable reduction of surface clutter and allows the imaging of separate layers of a composite test sample.

Original languageEnglish
Pages (from-to)1-10
Number of pages10
JournalComposites Part B: Engineering
Volume61
DOIs
Publication statusPublished - May 2014

Fingerprint

Nondestructive examination
Carbon fibers
Infrared radiation
Composite materials
Defects
Carbon fiber reinforced plastics
Hot Temperature
carbon fiber
Inspection
Graphite
Heat resistance
Heat conduction
Tomography
Heat flux
Numerical models
Thermal conductivity
Ultrasonics
Metals
Imaging techniques
Radiation

Keywords

  • A. Carbon fiber
  • A. Layered structures
  • B. Thermal properties
  • D. Non-destructive testing
  • D. Thermal analysis

ASJC Scopus subject areas

  • Ceramics and Composites
  • Mechanics of Materials
  • Industrial and Manufacturing Engineering
  • Mechanical Engineering

Cite this

@article{e399c9ba910242e5bcc10f134b94de6d,
title = "Modeling and characterizing impact damage in carbon fiber composites by thermal/infrared non-destructive testing",
abstract = "Thermal/infrared non-destructive testing (T/I NDT) is a particular application of IR thermography. T/I NDT is typically classified for passive and active, as well as for steady-state (stationary) and transient (non-stationary, or dynamic). Active T/I NDT can be classified by: (1) the type of thermal stimulation, (2) the arrangement of a sample and a thermal stimulation source, and (3) the size and shape of stimulated area. T/I NDT has proven to be a convenient technique for the detection of impact damage in composite materials due to the following: (1) graphite-based composites are similar to a blackbody by absorption/radiation properties in the infrared (IR) wavelength band, (2) their thermal conductivity is lower than that of metals but higher than of many non-metals thus ensuring reasonable temperature signals at convenient observation times, (3) impact damage leads to thin but laterally-extended air-filled defects which produce considerable thermal resistance to the in-depth heat flux, and (4) T/I NDT is a fast, remote and illustrative technique which, unlike ultrasonic inspection, does not require immersing a sample into water. This paper describes some approaches to thermal detection and characterization of impact damage in carbon fiber reinforced plastic (CFRP) of whose inspection is an important issue in several industrial areas, first of all, in aero space where subsurface defects might lead to catastrophic consequences. Realistic solutions of T/I NDT theoretical problems can be obtained by using 3D numerical models of heat conduction. Direct solutions allow better understanding of heat propagation in defect areas while inverse solutions ensure the evaluation of defect parameters, such as defect depth, size and thickness. Several characterization algorithms are available, with a one-sided T/I NDT procedure being better suited for the characterization of defect depth, while defect thickness is best evaluated in a two-sided procedure. In the case of CFRP composites, the defect characterization approaches are well developed, including the technique of dynamic thermal tomography, which enables a considerable reduction of surface clutter and allows the imaging of separate layers of a composite test sample.",
keywords = "A. Carbon fiber, A. Layered structures, B. Thermal properties, D. Non-destructive testing, D. Thermal analysis",
author = "Vavilov, {Vladimir P.}",
year = "2014",
month = "5",
doi = "10.1016/j.compositesb.2014.01.034",
language = "English",
volume = "61",
pages = "1--10",
journal = "Composites Part B: Engineering",
issn = "1359-8368",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Modeling and characterizing impact damage in carbon fiber composites by thermal/infrared non-destructive testing

AU - Vavilov, Vladimir P.

PY - 2014/5

Y1 - 2014/5

N2 - Thermal/infrared non-destructive testing (T/I NDT) is a particular application of IR thermography. T/I NDT is typically classified for passive and active, as well as for steady-state (stationary) and transient (non-stationary, or dynamic). Active T/I NDT can be classified by: (1) the type of thermal stimulation, (2) the arrangement of a sample and a thermal stimulation source, and (3) the size and shape of stimulated area. T/I NDT has proven to be a convenient technique for the detection of impact damage in composite materials due to the following: (1) graphite-based composites are similar to a blackbody by absorption/radiation properties in the infrared (IR) wavelength band, (2) their thermal conductivity is lower than that of metals but higher than of many non-metals thus ensuring reasonable temperature signals at convenient observation times, (3) impact damage leads to thin but laterally-extended air-filled defects which produce considerable thermal resistance to the in-depth heat flux, and (4) T/I NDT is a fast, remote and illustrative technique which, unlike ultrasonic inspection, does not require immersing a sample into water. This paper describes some approaches to thermal detection and characterization of impact damage in carbon fiber reinforced plastic (CFRP) of whose inspection is an important issue in several industrial areas, first of all, in aero space where subsurface defects might lead to catastrophic consequences. Realistic solutions of T/I NDT theoretical problems can be obtained by using 3D numerical models of heat conduction. Direct solutions allow better understanding of heat propagation in defect areas while inverse solutions ensure the evaluation of defect parameters, such as defect depth, size and thickness. Several characterization algorithms are available, with a one-sided T/I NDT procedure being better suited for the characterization of defect depth, while defect thickness is best evaluated in a two-sided procedure. In the case of CFRP composites, the defect characterization approaches are well developed, including the technique of dynamic thermal tomography, which enables a considerable reduction of surface clutter and allows the imaging of separate layers of a composite test sample.

AB - Thermal/infrared non-destructive testing (T/I NDT) is a particular application of IR thermography. T/I NDT is typically classified for passive and active, as well as for steady-state (stationary) and transient (non-stationary, or dynamic). Active T/I NDT can be classified by: (1) the type of thermal stimulation, (2) the arrangement of a sample and a thermal stimulation source, and (3) the size and shape of stimulated area. T/I NDT has proven to be a convenient technique for the detection of impact damage in composite materials due to the following: (1) graphite-based composites are similar to a blackbody by absorption/radiation properties in the infrared (IR) wavelength band, (2) their thermal conductivity is lower than that of metals but higher than of many non-metals thus ensuring reasonable temperature signals at convenient observation times, (3) impact damage leads to thin but laterally-extended air-filled defects which produce considerable thermal resistance to the in-depth heat flux, and (4) T/I NDT is a fast, remote and illustrative technique which, unlike ultrasonic inspection, does not require immersing a sample into water. This paper describes some approaches to thermal detection and characterization of impact damage in carbon fiber reinforced plastic (CFRP) of whose inspection is an important issue in several industrial areas, first of all, in aero space where subsurface defects might lead to catastrophic consequences. Realistic solutions of T/I NDT theoretical problems can be obtained by using 3D numerical models of heat conduction. Direct solutions allow better understanding of heat propagation in defect areas while inverse solutions ensure the evaluation of defect parameters, such as defect depth, size and thickness. Several characterization algorithms are available, with a one-sided T/I NDT procedure being better suited for the characterization of defect depth, while defect thickness is best evaluated in a two-sided procedure. In the case of CFRP composites, the defect characterization approaches are well developed, including the technique of dynamic thermal tomography, which enables a considerable reduction of surface clutter and allows the imaging of separate layers of a composite test sample.

KW - A. Carbon fiber

KW - A. Layered structures

KW - B. Thermal properties

KW - D. Non-destructive testing

KW - D. Thermal analysis

UR - http://www.scopus.com/inward/record.url?scp=84893789567&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84893789567&partnerID=8YFLogxK

U2 - 10.1016/j.compositesb.2014.01.034

DO - 10.1016/j.compositesb.2014.01.034

M3 - Article

AN - SCOPUS:84893789567

VL - 61

SP - 1

EP - 10

JO - Composites Part B: Engineering

JF - Composites Part B: Engineering

SN - 1359-8368

ER -