Modeling an HPGe detector response to gamma-rays using MCNP5 code

I. V. Prozorova, R. R. Sabitova, N. Ghal-Eh, S. V. Bedenko

Research output: Contribution to journalArticle

Abstract

The response function is the important information for the precise interpretation of experimental data and also for characterizing the developing nuclear instruments. Measurement of the response function normally requires a number of mono-energetic gamma-ray sources, a long acquisition time and an appropriate experimental setup. The Monte Carlo method, as an alternative to response function measurement, has widely been used and recommended. In this study, a computational model of an HPGe detector has been developed by using the MCNP5 code. To validate the simulated model, the simulations from mono-energetic sources have been compared to the corresponding measured data. Any deviation from the measurement could be attributed to the unmodeled details of the detector crystal, so they needed adjustment. Moreover, an analysis has been undertaken on the dependency of detection efficiency on the dead layer thickness of the germanium crystal. Having developed a computational model of the crystal, a set of correction factors was extracted to take into account the gamma-ray self-Absorption within the source volume. The simulated model of the HPGe detector in this study can be used to calculate the detection efficiency when the samples are not of the standard geometry which require self-Absorption considerations.

Original languageEnglish
Article number1950099
JournalInternational Journal of Modern Physics C
Volume30
Issue number11
DOIs
Publication statusPublished - 1 Nov 2019

Keywords

  • Dead layer
  • Gamma-ray
  • HPGe
  • MCNP5

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Physics and Astronomy(all)
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'Modeling an HPGe detector response to gamma-rays using MCNP5 code'. Together they form a unique fingerprint.

  • Cite this