Micro-explosion of droplets containing liquids with different viscosity, interfacial and surface tension

Dmitrii V. Antonov, Geniy V. Kuznetsov, Pavel A. Strizhak, Roman M. Fedorenko

Research output: Contribution to journalArticle

Abstract

Micro-explosion and puffing of multi-component slurry and emulsified fuel droplets can provide a several-fold increase in the evaporation and chemical reaction surface area. As a result, micro-explosion and puffing shorten the heating, evaporation, and ignition time of fuel compositions, improve the efficiency of their combustion, reduce fuel consumption, and provide its smooth spraying in combustion chambers. There are still no thorough studies on how the viscosity as well as surface and interfacial tension of emulsified fuels affect the integral characteristics of micro-explosive breakup of droplets under intense heating. In certain ranges of temperatures and component concentrations, there may be synergistic effects of these fuel characteristics on the threshold conditions and outcomes of micro-explosive droplet atomization. Such synergistic effects can make the secondary atomization of fuel droplets much more effective. In this research, we experimentally determine the heating times until breakup of relatively large emulsion droplets, the size and velocity distributions of newly formed child droplets with varying heating temperature, initial size of parent droplets, as well as component type and concentration. The results of this research are important for developing the current micro-explosion models and creating new, accounting for the breakup mechanisms and outcomes.

Original languageEnglish
Pages (from-to)129-147
Number of pages19
JournalChemical Engineering Research and Design
Volume158
DOIs
Publication statusPublished - Jun 2020

Keywords

  • Emulsified fuel
  • Interfacial tension
  • Micro-explosion
  • Puffing
  • Surface tension
  • Viscosity

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Micro-explosion of droplets containing liquids with different viscosity, interfacial and surface tension'. Together they form a unique fingerprint.

  • Cite this